Using Convolutional Neural Networks for
Deconvolution: an Novel Approach for
Understanding Datasets at Finer Timescales

Introduction

Finding the distribution of a random variable after it has
been summed is hard. The process typically involves taking
the inverse Fourier Transform of a distribution, which is a
painstaking process. | propose a method using machine
learning that determines what family of distribution best
fits a dataset at a time scale that is 10 times finer than the
dataset itself: something that deconvolution is trying to
solve. However, this method has considerable advantages
in its simplicity and generalizability.

The Central Limit Theorem states that a random variable
X~ f, when summed, will be best approximated by a
normal distribution (fig 1a). In short, most random
variables tends towards fitting to normal as they are
summed. What behavior of fit do these density functions
have towards other distributions? | show that this
behavior is unique to each family of distribution (fig 1b),
and thus can be approximated by a neural network.

Deconvolving Without a Filter
Given a set of P observations, denoted as , | create a 100 x P
matrix, denoted as A, where row 1is v and rows 2-100 are
permutations of v. From matrix A | create matrix B, where each
row of B, By, | = Apy, |+ + Afi_y, | + Ag;, - Each row in Bis
then a distributions of values. | then use maximum likelihood to
fit each row to 5 different distributions (normal, lognormal,
levy, Weibull, and logistic), which maximizes the probability
f(Biiay Biizyr - Biisop Bii100)|0) = TI4% f(Biiq[0), where
is one of the five density functions to be estimated, and 6 is the
set of distribution-specific parameters. I then take the
Kolmogorov-Smirnov statistic for each distribution at each row
to measure goodness of fit
Doing this over all rows creates a central limit theorem “signal
unique to the family of the posterior distribution. Training a
Convolutional Neural Network to classify the signal that is
generated by successive summation provides an effective
means for classifying the distribution to be deconvolved.

The signal that is described above,
represented in 5 100-length vectors, is put into
a 1-d convolution neural network. The output
is a label of what density function that this
dataset came from.

Greg Weaver
CS 230 Project

Summed 10
times

Summed 15
times

Original Levy
Distribution

\'” U\"‘
b ik H“, iy S

Log Normal
Distribution

Weibull

Levy
Distribution Distribution

The results are promising because it shows that
the right neural architecture can classify this
signal with 91% accuracy. It is important to note
that this means that given a dataset that is the
result of 10 summations, of which all look like a
normal distribution. Given that it looks like the
signal generated is unique to the original
distribution, | hoped that a neural network
would be able to tell apart the signals that
accompany each distribution. It is important to
note that the expressivity of having all five
signals from each distribution made an a huge
difference in network accuracy. Simply
concatenating all five signals into a single vector
resulted in random accuracy (20%).

Distribution

Fig e Most Efective Neural Architacure for Classficaton

Using R libraries to create random variables and utilize MLE
methods, | create a training dataset of 10000 examples with
2000 examples from each of the five classes that | am
classifying. Each example consists of 5 100-length vectors
that represent the behavior of fit to a distribution. Examples
are labeled from ground truth. Inputs were not normalized
as it drastically reduced accuracy. The signal is constructed
via MLE methods and Kolmogorov statistics of a dataset.

See figure 1c.

Train Tra. Test
Ac Size Size
97, 87 100 100

Vanilla, i

two-layer 00 0

2 ConvlD .92 91 100 100
layers+relu 00 0

3 ConvlD 997 8 100 100
layers+sig 00 0

2 ConviD 772 E32) 100 100
layers +str=5 00 0

The applications of this involve any time series
that is altered through convolution. For
example, what this method allows us to do is
that if one has displacements of someone
moving every 24 hours, we can use this
method to see what function governs their
movement every 2 hours.

LeCun, Bengio (1995). Convolutional Networks for
Images, Speech, and Time-Series.



