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Sample results for an anisotropic Heisenberg model (/, > Jx, Jy)-

» Neural Networks have been successful representing « Our model is a restricted Boltzman machine, which has a probability i ()
complex nonlinear functions for tasks like image distribution over both visible and latent variables. Integrating over latent Plot show the spin-spin correlators (x®x') of Py (x).
recognition and speech processing. We use such models variables yields the distribution of visible variables. Epoch 1 Epoch 27
for representing many-body quantum states. ¥(x, h;0) = exp(—a'x —b"h — h'Wx) 1

+ Quantum mechanics underlies numerous open challenges M . 2
in materials science and quantum engineering; simulating P(x;0) = le(x, h;0) = eXP(—aTx)HZCOSh b; + Z Wijx; 3
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these systems would enable improved material synthesis h i=1 j=1
or device design » The sampling process can be understood as a stochastic sequential model, 5

» The number of parameters necessary to represent a with iterative step given by the following diagram. 6 -

quantum state scales exponentially with system size, 1 2 3
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precluding many simple numerical techniques. We use
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parameters.
Quantum states can be represented by complex valued
functions over the basis vectors of a Hilbert space. The
square modulus gives probability distribution over the
basis states.
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+ Given a system with known Hamiltonian H (operator that
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xm={j* i are highly anti-correlated.
«

specifies the energy and dynamics of the state of the * The algorithm stochastically samples the state space using a « Stochastic reconfiguration of a restricted Boltzmann
system), we seek the ground ftate, which is the probability Metropolis-Hastings algorithm with the probability of transnzlonlng machine successfully optimizes the wave-function

distribution  Pg(x) = 'Z’I’Ij;"‘;zy) that minimizes the to a new state x’ from a previous state x is given by |w(",;e) . represented by:the:network. ) ) )
. - . Y(x:6) + Stochastic Reconfiguration algorithm is exponentially
expectation value of the Hamiltonian. Formally: - The process can be tuned by adjusting both thermalization time sensiive to the learning rate, making this learing
Y') and the length of the sampling process. Both must be set above algorithm very hard to optimize. Frequently overflows

EYl=E ZHXX'W = E[E10c(x0)] the estimated autocorrelation time of this Markov Chain during training for improper configuration.

x » Thermalization of the Metropolis-Hastings algorithm plays

technique.

Yo = argminy, E[Y] Traini It a minimal role in controlling gradient descent.
For any variational wave function 1, (x; 8) (neural network Ll bz Ut Future Directions

or otherwise), training can be achieved through the

stochastic reconfiguration algorithm of Sorella, et al. 1D Ising Model with h, = 0.5 2D Heisenberg Model with J, =10 )
1 * Infrastructure we developed works for arbitrary networks.
_ 1 opx6) B " H= Zgggf +0Y0) +J,07a7 | * These techniques would benefit from implementing weight
dy;(x; 6) = m 20; 1.0k batch, 0=0.005 ] sharing for systems with symmetries, particularly
I —— 10k batch, 0:=0.005 + therm % convolutional architectures.
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~ E[€10c(x) dp(x;0)] — E[E1oc (0)]E[dyp; (x; )]
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