# Yup'ik Eskimo to English: Machine Translation Using Augmented Datasets

Kevin Chavez, Christopher Liu

{kechavez, cwtliu}@stanford.edu

#### Motivation

- Machine translation tools do not yet exist for the Yup'ik Eskimo language. It is spoken by around 8,000 people who primarily live in Southwest Alaska.
- With the availability of Yup'ik Eskimo and English parallel text, and a member with fluency of the language in our team, we developed a pipeline for reliable translation of this language pair.
- Yup'ik is polysynthetic and a low-resource language, posing unique challenges and trade-offs for machine translation

pissur- @-+yug- -llru- -nrite- +'(g/t)uk
(to hunt) (to want) (past) (negation) (2 subjects)
pissuryullrunrituk = The two did not want to go hunting.

#### Approach

We built parsing and dictionary lookup tools to retrieve additional information from existing Yup'ik-English dictionaries to augment our datasets upstream of the RNN.



- We evaluated accuracy on various augmented source dataset
- containing Yup'ik words and English lookup definitions. Blue boxes are toolkits we built. White boxes are datasets. Orange boxes are separately trained models

# **Data Preparation**

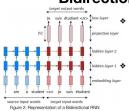
Conversational parallel text Yup'ik/English from 10 books (including the Bible), totaling ~100,000 sentences.

- manually scanned with object character recognition.
- data cleaning: aligning parallel texts, removing empty entries, non-ASCII characters, book header artifacts, etc.
- 93/3.5/3.5 train/dev/test datasets.

#### **Tokenization**

- Neural networks can only learn a finite number of words in vocabulary and will show poorer performance if the size of the vocabulary is too large.
- For Yup'ik Eskimo, a polysynthetic language consisting of morphemes (roots, postbases, endings), the following tokenization methods were applied to the dataset:
  - Rule-Based Parsing (RBP) using existing grammar roles
- Byte Pair Encoding (BPE) as an unsupervised parsing method

# **Bidirectional RNN**



 Recurrent neural networks are state-of-the-art for machine translation tasks. Our method applied a bidirectional LSTM model with attention.

As part of parameter tuning, we explored performance trade-offs ending with learning rate (0.5), number of layers (2), batch\_size (128), and exponential learning rate

#### **Experiments**

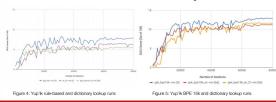
- Ypk only (NLTK word tokenizer)  $\rightarrow$  En Ypk only (RBP) → En

- En only (DL)  $\rightarrow$  En Ypk (RBP) + En (DL)  $\rightarrow$  En
- a. Sentence-Level Start/End Tokens, punc, removed
- Sentence-Level Start/End Tokens,
- punc. and stop words removed
  Ypk only (BPE 15K) → En
  Ypk (BPE 15k) + En (DL) → En
  a. Sentence-Level Start/End Tokens, punc. removed
- Sentence-Level Start/End Tokens, punc. removed, 2 hidden layers

is Yup'ik. En is English. RBP is rule-based parser. BPE is byte pair ting. DL is dictionary look-up. English was tokenized using the word tokenizer function.



# **Results: BLEU Graphs**



#### **Analysis**

- Conclusions

  - Tokenization upstream of the RNN improves accuracy.

    Augmenting the dataset with the English dictionary definitions did not outperform Yup'ik only inputs using our methods.
  - Increased ambiguity when including definitions
- Model may not be complex enough
- Challenges Out of memory issues when increasing input size
- Trade-offs when reducing input size (punctuation and stop words)
- - Gather more training data.
  - Increase computing capabilities.
  - Experiment with alternative network architectures when combining Yup'ik and English dictionary lookup.

# Complementary Project (CS224n)

- Our project was focused on building a rule-based parser and trying various tokenization schemes upstream of the RNN.
- With a set vocabulary size (30k), Morfessor 2.0 tokenizer had highest accuracy.
- When comparing 10k, 15k, and 30k BPE merges, BPE 15k did best.

#### Acknowledgments & References

Professors Kian Katanforoosh and Andrew Ng, TA: Surag Nair

[4] Vandeghinste et al. Metis-ii: Machine translation for low resource languages. Machine Translation, 22, 2007.
[5] Ann Inviera and Chrisc Gallison-Durch. Combining bilingual and Chrisc Gallison-Durch. Combining bilingual and ng-gromparable corpora for low resource machine translation. Association Computational Inguissics. 8, 2013 [6] Milhr-Thang Luong, Eugene Brevdo, and Rui Zhao. Neural machine Translation (seg-deen) lutorial. https://github.com/ensorflow/mrnt, 2017.