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Abstract

Embedded Deep Learning

Within the wireless physical layer realm, there has been
ongoing research and application of deep learning to
network side optimizations (self-organizing networks,
scheduling algorithms, beamforming, etc), however the user
equipment (UE) domain has largely not yet been influenced.
The primary challenges in integrating deep learning into the
UE physical layer are the impact on device power
consumption, silicon area, latency and flexible design
needed for rapid technological advancement.

This project summarizes existing research in power and
complexity reduction techniques for deep neural network
inference in embedded platforms, as well as discussing
applications of deep learning on modem baseband physical
layer design.

Memory Advancements. Up to 50x compression of
inference weights in [1] through Pruning, Quantization, and
Hamming coding. Dense NN [2] also giving similar
performance with 2-3x fewer parameters

Processing Reduction: 3x speedup & 5x power
consumption reduction in techniques discussed in [3],
[4], [5] - mostly focused on exploiting zero-valued
activations resulting from ReLU operation

Paging Indicator (PI) Detection Example

Modem Deep Learning Exploration

Modem Processing Control Flow

Brief example of input/output deep learning input options
for RX control flow

. Channel State Info (CSI)
. Raw LLR symbols
. Decode metrics, HARQ

@ TD “1Q” Stream
(2) NB & WB FD Sym
@ Channel & Noise Est

Idle: (a) Choosing a technology (2G/3G/4G/5G) and
frequency band to camp on, (b) Measuring and retaining
a strong link over time, (c) Decoding periodic paging
indicator channel from the network, (d) Classifying
interfering signal

Voice: (a) SIR Target estimation, (b) Early frame
decoding, (c) Voice quality (MOS) estimation and feature
impact, (d) Quality of non-CRC encoded channels, (d)
false pass elimination, (e) Decode metric analysis

Data: (a) Channel State Feedback (CSF) determination,
(b) HARQ LLR compression, (c) Inform decoder design
and ‘quality of failure’ analysis, (d) IC design

Input: 067 ms of baseband 1Q samples

Output 1 if reliable Pl detected

Train/Test data 1M+ generated samples from SNR sweep (-
20:10 dB) + multipath fading + time/freq error distribution
Architecture: CNN with 1D input, compressed as in [1]
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The modem user equipment physical layer domain appears to
be an area not yet explored in the context of modern deep
learning techniques. Recent advancements in neural network
compression, techniques to minimize processing power, and
specialized ASIC designs have made it feasible to incorporate
deep learning into commercial 3G, 4G and 5G solutions.

The more promising applications appear to be within the 4G
and 5G domains, for channel feedback reporting and as and
tool to influence demodulation and modulation design.




