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Joel Persson (joelpe@),? lan Shaw (ieshaw@),! Andrew Slottje (slottje@)!

R
i

iC

(1) Institute for Computational and Mathematical Engineering and (2) Management Science & Engineering, Stanford University

= Discover arbitrage opportunities in cryptocurrency

markets using exchange trading data to predict returns.
= Attenuate cryptocurrency market volatility
through the use of this algorithm to correct mispricings.

Background

Predicting asset prices is a difficult problem because of the “no
arbitrage principle,” which states that markets price out excess
returns.  There is also limited previous research on cryptocur-
rency price prediction. Previous findings indicate suitability of
LSTM models for this type of problem. [1, 2] One such model,
the “R2N2,” uses vector autoregression as RNN input. [3] We
adapt this model to a multiple-asset cryptocurrency setting and
extend the model architecture to include residuals from a VAR-
MAX regression on the feature set.

Data and Feature Selection

‘We use data published by the founder of Bittrex, an online cryp-

tocurrency exchange. The data comprise hourly observations of

various trading data as well as BTC-denominated price series in
several coins. We select the top 5 by capitalization at initial date.

- Features: Volume, base volume, and spread in selected coins,
with vector autoregression residuals as additional features.

- Response: Log hourly returns in 5 coins.

- Data splitting: Training set over 9/2015 - 12/2016
(70%), cross-validation set over 12/2016 - 3/2017 (15%),
test set over 3/2017 - 6/2017 (15%).

- Standardization: We use StandardScaler () from the
sklearn library to normalize and center the feature set.

orrelations of Retums and Lagged VARMAX Residuals

Figure: Correlation of returns with VARMAX-estimated residuals. Note the
cross-coin correlation and strong inverse response to previous term's residual

VARMAX Model Development

Vector autoregressive methods are used for multidimensional time
series problems. In the R2N2 algorithm, residuals from the VAR
prediction are used as inputs to an RNN. [3] We expand this
method to include an adaptation of the more flexible and
dynamic VARMAX model, which allows for moving average
terms and exogenous predictors: [4]
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We specify our feature set as the exogenous predictors (z;) and
the 5 coins’ returns as endogenous (y, € R™1). We provide
massive dimensionality reduction in the autoregressive
optimization problem. This important computational im-
provement in R2N2 time series prediction is suitable for use in
high-dimensional covariate spaces.

We find the moving average terms are non-sf cally significant
Following our VAR analysis of AIC-selected optimal lag length,
we use a lag of 3 to specify the model.
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Figure: Calibrated model architecture. Each output represents a binary
prediction for significant positive price movement in a single coin in the
classification problem and an absolute prediction in the trading problem.

RNN Model Development

Strong results in the literature indicate use of an LSTM network

for this problem. LSTM cells are able to store values through

many backpropagation epochs, thereby providing superior results

for time-series data.

= Architecture search: Random decreasing-size architecture
search selects 6 layers to be optimal, and random activation
search selects a mix of tanh and leaky ReLU. These results are
robust to problem specification.

= Hyperparameter search: Small values for dropout and
regularization hyperparameters work best, as shown at right
for Litecoin. Batch sizes smaller than 72 were unstable under
Adam optimization. LTC required additional regularization.

= Loss function: We train on balanced class weights. We fit
mean-squared error loss for trading predictions and
cross-entropy loss against binary response for prediction
classification.

Transfer learning: We iterate from a single-coin model to
find regularization parameters and from the VAR training to
give the LSTM duration.
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Figure: Hyperparameter search illustration.

Results

Our model improves prediction accuracy by as much as
20% on both classes across coins, while our trading strategy
is subject to volatility that diminishes returns. We plot the ROC
and tabulate ac v on the cross-validation and test sets
Although we obtain very good AUC and accuracy on the c
validation set, these results do not fully transfer to the test set.
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While the loss functions decrease in tandem, indicating appro-
priate regularization, some variance is unavoidable as we have
sampled from different durations to avoid market regime bias:

the cross-validation set comes from a distribution which is closer

in time to the training set than the test set

-

Figure: ROC curves on cross-validation and test sets for full currency set under
slightly relaxed regularization.

Our best AUC is for ETH - achieving 60% on the test se
is the most heavily capitalized coin during this period, indicating
data sparsity may be contributing to the variance in our results.
Additionally, it was easiest to achieve high dual-class accuracy
on Litecoin, which has only 11% volatility over the study period
(other coins have volatility ranging from 16% to 20%), indicating
volatility may be encumbering our results as well.
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Figure: Accuracy (at cross-validated threshold) and predictive correlation.
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By a common benchmark for trading strategies (1% correlation),
our prediction obtains a high correlation with the realized re-
turn for all the coins, and especially ETH, DASH, and LTC. This
indicates a highly tradeable strategy by industry standards.

Test Set Backtest

Figure: Returns accruing to trading strategy implementation. Our model
outperforms the market baseline until a correction during the test set period.

Discussion

By our correlation metrics, we have shown that it is possible to
build a strategy which generates excess returns in a portfo-
lio of cryptocurrencies. This demonstrates inefficiencies in the
cryptocurrency market, in line with the “no arbitrage principle”
which states that no such exce:
It appears that high volatility and low liquidity negatively affect
our classification accuracy and trading strategy results, in con-
trast to our expectation that our algorithm could exploit struc-
ture in currency volatility to boost accuracy. In particular, our
results evince complex interplay between mean-reversion ef-
fects from the previous period’s returns and momentum ef-
fects that we hypothesize predominate under certain
information regimes, which we believe to induce observed
excess volatility under information asymmetry. We accordingly
suggest the following directions for future work:

s returns it otherwise.

= Adjusting investment frequency: There is a close link
between prediction accuracy and currency volatility.
Considering different timeframes (e.g. longer-term horizons)
may assist in decoupling these two.

- News data: Incorporating news sentiment data into the
RNN implementation may build resilience to volatility.

- Economic data: Including macroeconomic features in the
VARMAX may boost the model’s ability to learn seasonality.
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