Speech Recognition - From Speech to Text

Stanford | ENGINEERING

Currently, the giant tech companies are fighting to build the best speech based assistant.
Nevertheless, Siri, Alexa, Cortana and Google now are good at recognizing words but they still make
many mistakes when there is background noise. In addition, no single assistant is good enough at
understanding complex human intents such as "Siri what is an easy dish to cook for 6
people”. In this project we explored speech recognition through classifying audio files into
written words. In order to build a more robust model which can be used in the outdoors, we
augmented the audio data using various background noises in order to make our training data set
more generalized

0 A O

amazon alexa

-

Hey Cortana

ta and preprocessin

We preprocess the data from its raw 16kHz form into a 2D MFCC matrix.

The steps of the transformation are:

1) Take the Fourier transform of (a windowed excerpt of) a signal: we used 98 time windows (one
time stepfor every 160 amplitude readings and we remove the first and last time step)

2) Map the powers of the spectrum obtained above onto the mel scale, using triangular overlapping
windows.

3) Take the logs of the powers at each of the mel frequencies. Based on our literary review we saw
that the recommended number of bins to use for the MFCC fingerprint is between 26 and 40 for an
audio file sample rate of 16kHz. In our project we used 40 bins.

4) Take the discrete cosine transform of the list of mel log powers, as if it were a signal.

5) The MFCCs are the amplitudes of the resulting spectrum.Overall our MFCC data representation is
a 2D matrix of size 40x98, for 40 frequencies and 98 time-steps.

[F& 0w dom Tk rght oo Stop g0 silence unknown
H 2377 2375 2359 2353 2380 2372 4000 4000

Figure 1: number of examples of each class in our dataset

Figure 3: summary of raw
sound to MFCC conversion

Figure 2: Raw waveform
of an audio file

Figure 4: a 40x92 MFCC
of the word *happy’

Baseline model

1) Model: One Fully connected layer
input->FC->softmax

accuracy: 48.2%

Parameters: 3920

Ben Limonchik, Rysen Otomo
CS230

2) Model:

2 Layer CNN (input->conv2D->RELU-> maxpool-
>conv2D->RELU->fully connected->softmax)
Hyperparameters: learning rate, filter sizes

Number of Filters per layer: 64,64) LA

accuracy:9o%

3) Model:

3 Layer CNN (input->convaD->BatchNorm-> RELU-
>maxpool->conv2D->BatchNorm->RELU->conv2D-
>BatchNorm->fully connected->softmax)
Hyperparameters: learning rate, filter sizes
Number of Filters per layer: 64, 64, 128
accuracy:92%

4) Model:

3 Layer CNN (input->conv2D->BatchNorm->RELU-
>maxpool->conv2D->BatchNorm->RELU->conv2D-
>BatchNorm->fully connected->softmax)
Hyperparameters: learning rate, filter sizes
Number of Filters per layer: 64, 128, 256
accuracy:94%

5) Model: Single LSTM cell,

Hidden layers: 100 i=etel o) 9
Learning rates: 0.05 for 6000 iterations |- s . - A h?’"{ A
and 0.005 for 12000 iterations Lo] e é
accuracy: 83.7%

6) Model: Stacked LSTMs il
2 and 3 stacked LSTM cells

Hidden layers: 100

Learning rates: 0.05 for 6000 iterations
and o.005 for 12000 iterations
accuracy: 83.4%

7) Model: Bidirectional LSTM cells

Hidden layers: 100 & 2 R %
Optimizer: Adam [|
Learning rates: 0.05 for 6000 iterations \ i \ :

and o.005 for 12000 iterations |
accuracy: 88.7%

Hyperparameters in CNN:

The hyperparameters are the learning rate and
filter sizes. Iterating over different learning sizes
shows 0.001 is the best learning rate and an 8x20
2 first convolutional layer filter size is the best

i. filter size. Other learning rates tested were 0.01
and 0.0001 while other first filter sizes tested
were 4x10 and 12x30. Tuning occured over 2000
g . training steps. This is when the most learning
occurs.

DA

f

!
“‘v
Wﬁmﬁm}m

Figure 6: cross entropy loss versus iteration for
the top CNN architecture

ure 5: accuracy versus iteration for the top
CNN architecture

Dev Set Accuracy:
Slence unknown yes mo up down et might _on off stop g
942% _ 86.1% O7.3% 92.0% 904% 014% 92.2% 98.8% 95.1% 97.9% 97.8%

Test Set Accuracy:
[lonce wknown yes o w down bR ngt on of sop @
98.8% 85.9% 96.0% 93.4% 88.7% 91.3% 928% 97.1% 95.2% 96.8% 93.1% 96.4% H
Modifications to RNN model:
Aokl 1) Stacking LSTM cells: Making our networks deeper
mew.wwl"‘ I by stacking more LSTM cells on top of each other had

no major effect on final accuracy besides the longer
time it took to train the network.
2) Hidden units: The number of hidden units used had
asignificant effect on the final accuracy of the model.
We tested the basic feed forward LSTM network with
50, 200 and 200 hidden units:

Figure 7: Accuracy versusteration: Orange curve: best CNN validaton, Grey
curve: best CNN taining, Red curve: best RNN training, Bl curve: Best RN

3) Switching to Bi-directional networks: This change
of architecture led to the most prominent increase in
overall accuracy. The best test accuracy achieved with
the bi-directional model was 88.7%.
WW 4) Learning rate: We used a 0.05 learning rate for the
LI kMMM first 6,000 iterations and then reduced it o 0.005 after
6,000 iterations when the accuracy started to plateau.

Best RNV
valdation

Future Directions

As seen above our best CNN model outperformed our opt
LSTM network. The best CNN network achieved 93.7% testing accuracy whlle the
best RNN model achieved 88.7% testing accuracy. This may be the case because .
of how the error signal flows through the RNN network. In the RNN the error hy
signal might have to travel up to 98 time-steps to modify the weights of a sound
input based on another future input. Given more time we would have

—
<

with additional network modifications. Specifically, it may be the case that using
attention in our RNN model could help speed up the learning process since the
relationship between audio features of different times would be better captured by
the alpha weights of an attention model.

