architecture. Definition of
the block size B is shown.

Deep Orthogonal Neural Networks EH HE U

Ben Nosarzewski | bin@stanford.edu

Introduction
Very deep neural networks achieve the best performance on some of the most challenging machine learning tasks. Theoretical arguments suggest that
deep networks can be more efficient than shallow networks, and intuition suggests than deep networks can learn complex high-level abstractions [1,2].
However, the exponentially vanishing gradient problem is a fundamental obstacle for training deep networks. ResNets and DenseNets successfully avoid
this problem by introducing skip connections which help the gradient back-propagate through the network [3,4]. Nevertheless, recent results suggest
that because of the nature of skip connections, these networks may simply be an ensemble of shallower networks, widening of these networks is more
effective than deepening, and their actual depth is unclear [5,6]. In this work we propose a novel type of neural network which avoids the exponentially
vanishing gradient problem by using layer weights corresponding to orthogonal matrices and a norm-preserving nonlinear operation. We find that our
deep orthogonal neural networks are able to train at larger depths than standard feedforward networks.

Definitions Deep Orthogonal Network
We design a nonlinear operation, g, which preserves Standard feedforward neural networks suffer from exponentially vanishing gradients because matrix multiplication
norm f_°" b°h‘h forwahrd a.nd bafcklpropagan?nr; T'_‘e and the ReLU activation function do not preserve norm of the activations and gradients during forward and back
:S;’:::" f;:g‘;zllm:_sr']gr_'s ekelements of the inpu propagation. Fig 1 demonstrates a scenario in which the gradients exponentially vanish for a standard network
5 ! B _ " with 10 or more layers. In contrast, as shown in Fig 2, a deep orthogonal network with 20 layers and the same
Suppose a,z € R and z = g(a). Then define A > > N ;
number of hidden units is able to achieve an error of 1% when trained on the same dataset. The gradients of the

+a; ifi<n/2, activations are constant and the gradients of the neural network parameters do not exhibit exponential decay. The
zi=< —a; ifi>n/2anda; s <0, 1% error is better performance than that of the standard feedforward networks at any depth for the same number
i—n/2
+a; otherwise. of hidden units which have errors greater than 10%. We note that we purposefully chose a very small number of

hidden units for all networks tested in this project in order to force the networks to use their depth and not allow

We then define forward propagation through an them to rely on width.

orthogonal layer as:

2l = QUgli=1 4 plt
all = g(z11)

A

where Q! is an orthogonal matrix.

Gradient Analysis
Let J be the softmax cross entropy cost function.

Frobenius norm

|
)
fon W ‘] M M ,
v w«w‘w_

iteration [1e3]

Var(9.J /9l 1) = Var(Q!'=1a.7/9211)
= Var(J/92")

= Var(8J/9a") Training Algorithm Fig 2. a) Classification boundaries after training
So the size of the gradients of the layer activations are Training a deep orthogonal neural network involves dfeep orth«_ago_nal network with 20 Iayers and 2
perfectly constant during backpropagation! performing gradient descent along the manifold of orthogonal hidden units in each layer. b) Activations of the
matrices, a special case of the Stiefel manifold. We use last-loyer belaressoftmax crossentopy. The line
The bias bl does not preserve the norm of the al'l geodesics along this manifold to update the parameters of the x=yshould ideal!y separate the re.d and blue
during forward propagation. However the resulting orthogonal matrices and also parallel transport the tangent classes. c) Magnitude of the gradients for the

. . e activations, orthogonal parameters, and bias
change in Var(all) is an additive change and therefore space projection of the gradient to the new updated location gl
does not result in exponential decay of the gradients

dJ/dol" and dJ/db!" (see Fig 2c).

- % - ! _ parameters. d) Cost function and error during
on the manifold when performing each iteration of gradient training.

descent with momentum.

o7 _12J iy

Alternating Orthogonal/ReLU Architecture
In Fig 4 we show the results of using an architecture which combines standard layers
with ReLU activations and orthogonal layers. The types of layers alternate as shown in
Fig 3. This demonstrates that orthogonal layers can be inserted into a network to help
control the gradient flow during backpropagation.

L=9; H=4; B=2 L=17; H=4; B=2 L=31; H=4; B=3 L=101; H=8; B=10

No L2

Fig 4. Classification boundaries for Orth/RelLU architectures on the spiral dataset. Gradient
magnitude and cost function during training shown for those networks with L2 regularization.

MNIST

QM ~ m 92 We test orthogonal networks on the MNIST dataset of handwritten digits which is a standard benchmark for various algorithms. We chose this
aJ 1Cs 8 dataset because of the small size of the images and because we were surprised to learn that the best performing single feedforward network
6l ~ m < 92 10) Projection of Z onto tangent space at Q: (test error 0.35%) performs as well as the best single convolutional network (test error 0.35%) [7]. Our primary goal was not to achieve good
=) & P 4 T performance on MNIST, but to demonstrate once again that orthogonal networks can be trained at larger depths than standard networks. As
7TT<Z) =QA+(I-QQ") shown in Fig. 5, we find that standard networks cannot be trained at a depth of 50 units because of the vanishing gradient problem. In contrast,
_ L (QTZ _ ZTQ) gradients of our orthogonal networks are stable at this depth and the cost function and classification error decrease during the training. We
Geodesic equation in direzction 1,(2) from Q: hope to achieve good performance on MNIST and other real world datasets with orthogonal networks in future work.
o H
£ - At
; Q) = Q)
] Parallel transport of A along the geodesic: a) b)
£ [{ o=
8 =] References
2 A= Q (t)B (f) E | e n- 1. M. Nielsen, Neural Networks and Deep Learning,
- ; 2 504 . 080 2017.
A = Q(0)et/2B(0)e/? g 4|8 Train 2.Y.Bengio, Learning Deep Architectures for Al Vol
i A 17" Validation 89% 64% Sl
5 4 % & T Matrix exponentiation when calculating the geodesic path is & 10° e e e ‘ o070 ;;v"fsgnz;';;ffo;:" Bnd 354ty
layer in principle costly because it will take O(nj L) time where Lis 107! et Lid 04X 4.G. Huang, Z. Liu, L. Maaten, and K. Weinberger,
the number of layers and n, is the number of hidden units. i :";“’;16“?:":99:"6" omodakis, arxie:
Fig 1. Plot of the gradients of the layer activations However, the advantage of deep networks is that they use " edenne T iy 170600388, S
forstandard feedforwardnetral fetwons of fewer hidden units where n, is relatively small and so Vet M. Wiber,ands. sl Coff,
varidble depths W:h RelU ac‘;‘vamvs a.ndzz hlldden calculating the geodesic may take less time than forward and Fig 5. a) Magnitude of the gradients for the feedforward network and orthogonal networks. Number of 7.Y. LeCunn, http://vann.lecun.com/exdb/mist/
units trained on the dataset shown in Fig 2a. Inset feedforward and orthogonal networks. c) Training,

back propagation. hidden units = 4. b) Error vs training iteration for

shows the classification error for each of the validation, and test error for feedforward and ort

network sizes.

hogonal networks.

