

Emotion Recognition on AffectNet via CNNs

Oseas Ayerdi, Christopher Bucknell CS230 Project — Stanford University {oseas, bucknell}@stanford.edu

Motivation

- Emotion recognition has a variety of applications: o Healthcare.
- o Testing user experience of software, products and services.
- Through Convolutional Neural Networks we seek to recognize emotions from pictures of faces.
- Ecosystem to success in the task:
 - o Availability of large annotated datasets.
 - o Large-scale computational power.

Dataset

• We used 390,969 manually annotated images from AffecNet (Mollahosseini et al., 2017), labeled into 11 categories:

- Resized images to 128x128 px.
- Divided data into:
 - o Train: 90% [351,874]
 - o Validation: 5% [19,542]
- o Test: 5% [19,553] • Types of data augmentation:
 - o Flip & Color Jitter

Results

Accuracy on Validation Set

Model	Accuracy (%)	# of Parameters
Human Error w/o Training	57.0	N/A
Baseline (64)	60.2	1,143,307
Baseline (128)	60.7	4,289,803
ResNet (64)	60.7	2,613,227
ResNet (128)	61.1	9,691,115
Baseline (128, DA)	60.2	4,289,803
Human Error w/ Training	63.0	N/A
DenseNet (128, DA)	63.2	22,320,971
Hybrid	63.4	11,961,579

Error Analysis: Confusion Matrix (DenseNet)

Conclusions

- o While changing the network architecture, we achieved human-level performance on overall accuracy at a huge computational cost.
- o Fear category was the most improved category, changing weights in loss function could improve others.
- Future work:
- o Salient maps to understand mechanics of network.
- Reduce # of parameters with 1x1 convolutions.
- o Increase number of inception layers or better cost