CS230: Lecture 4
Xavier initialization
Regularization methods
Kian Katanforoosh
We will learn how to:

- Prove the initialization methods
- Understand and visualize regularization methods

I. Xavier initialization
II. Regularization methods
III. Announcements
Parameter initialization

Forward propagation (L layers)

\[
\begin{align*}
 z^{[1]} &= W^{[1]} x + b^{[1]} \\
 a^{[1]} &= g^{[1]}(z^{[1]}) \\
 z^{[2]} &= W^{[2]} a^{[1]} + b^{[2]} \\
 a^{[2]} &= g^{[2]}(z^{[2]}) \\
 &\vdots \\
 z^{[L]} &= W^{[L]} a^{[L-1]} + b^{[L]} \\
 a^{[L]} &= g^{[L]}(z^{[L]})
\end{align*}
\]

We need to initialize the parameters to start the learning process.
Parameter initialization

2 important properties of the initialization:

- Break the symmetry
- Not too large/small

Xavier initialization:

\[W^{[l]} = \text{Normal} \left(\mu = 0, \sigma = \sqrt{\frac{1}{n^{[l-1]}}} \right) \]

How did they come up with this?
Goal: Variance stays the same across every layer to prevent the signal from vanishing or exploding

$$Var(a^{[l-1]}) = Var(z^{[l]})$$
Proof of Xavier initialization

\[\text{Var}(a^{[l-1]}) = \text{Var}(z^{[l]}) \]

\[z^{[1]} = W^{[1]} x + b^{[1]} \]
\[a^{[1]} = g^{[1]}(z^{[1]}) \]
\[z^{[2]} = W^{[2]} a^{[1]} + b^{[2]} \]
\[a^{[2]} = g^{[2]}(z^{[2]}) \]
\[\text{...} \]
\[z^{[L]} = W^{[L]} a^{[L-1]} + b^{[L]} \]
\[a^{[L]} = g^{[L]}(z^{[L]}) \]

Shape analysis:

\[z^{[l]} = W^{[l]} a^{[l-1]} = \left(\begin{array}{cccc} w_{11}^{[l]} & w_{12}^{[l]} & \cdots & w_{1(n_{l-1})}^{[l]} \\ w_{21}^{[l]} & w_{22}^{[l]} & \cdots & w_{2(n_{l-1})}^{[l]} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n_{l-1},1}^{[l]} & w_{n_{l-1},2}^{[l]} & \cdots & w_{n_{l-1},n_{l-1}}^{[l]} \end{array} \right) \left(\begin{array}{c} a_{1}^{[l-1]} \\ a_{2}^{[l-1]} \\ \vdots \\ a_{n_{l-1}}^{[l-1]} \end{array} \right) = \sum_{j=1}^{n_{l-1}} w_{kj}^{[l]} a_{j}^{[l-1]} \]

\[z_{k}^{[l]} = \sum_{j=1}^{n_{l-1}} w_{kj}^{[l]} a_{j}^{[l-1]} \]

Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri
Proof of Xavier initialization

\[z_k^{[l]} = \sum_{j=1}^{n^{[l-1]}} w_{kj}^{[l]} a_j^{[l-1]} \]

\[\text{Var}(z_k^{[l]}) = \text{Var} \left(\sum_{j=1}^{n^{[l-1]}} w_{kj}^{[l]} a_j^{[l-1]} \right) = \sum_{j=1}^{n^{[l-1]}} \text{Var}(w_{kj}^{[l]} a_j^{[l-1]}) \]

\[\text{Var}(XY) = E[X^2] \text{Var}(Y) + E[Y^2] \text{Var}(X) + \text{Var}(X) \text{Var}(Y) \]

\[\text{Var}(W^{[l]}) = \frac{1}{n^{[l-1]}} \]

\[\text{Var}(w_{kj}^{[l]} a_j^{[l-1]}) = E[a_j^{[l-1]}]^2 \text{Var}(w_{kj}^{[l]}) + E[w_{kj}^{[l]}]^2 \text{Var}(a_j^{[l-1]}) + \text{Var}(w_{kj}^{[l]}) \text{Var}(a_j^{[l-1]}) \]

- Weights i.i.d
- Inputs i.i.d
- Weights/Inputs mutually independent
Relation between variance of the input and variance of the output in RELU

\[
Var(z^{[l]}) = n^{[l-1]} Var(W^{[l]}) E[(a^{[l-1]})^2] = \frac{n^{[l-1]}}{2} Var(W^{[l]}) Var(a^{[l-1]})
\]

\[
E[g(x)^2] = \int_{x=-\infty}^{x=+\infty} g(x)^2 p(x).dx = \int_{x=-\infty}^{x=+\infty} \max(0,x)^2 p(x).dx
\]

\[
= \int_{x=0}^{x=+\infty} x^2 p(x).dx = \frac{1}{2} \int_{x=-\infty}^{x=+\infty} x^2 p(x).dx
\]

\[
= \frac{1}{2} \int_{x=-\infty}^{x=+\infty} (x - \mathbb{E}[x])^2 p(x).dx
\]

\[
= \frac{1}{2} Var(x) \quad \mathbb{E}[X] = \sum_{i=1}^{n} x_i P(x_i = i)
\]
Proof of Xavier initialization

\[z_k^{[l]} = \sum_{j=1}^{n^{[l-1]}} w_{kj}^{[l]} a_j^{[l-1]} \]

\[\text{Var}(z_k^{[l]}) = \text{Var} \left(\sum_{j=1}^{n^{[l-1]}} w_{kj}^{[l]} a_j^{[l-1]} \right) = \sum_{j=1}^{n^{[l-1]}} \text{Var}(w_{kj}^{[l]} a_j^{[l-1]}) \]

- Weights i.i.d
- Inputs i.i.d
- Weights/Inputs mutually independent

\[g^{[l]} = \tanh() \]

\[\text{Var}(w_{kj}^{[l]} a_j^{[l-1]}) = \mathbb{E}[(a_j^{[l-1]})^2] \cdot \text{Var}(w_{kj}^{[l]}) + \mathbb{E}[(w_{kj}^{[l]})^2] \cdot \text{Var}(a_j^{[l-1]}) + \text{Var}(w_{kj}^{[l]}) \cdot \text{Var}(a_j^{[l-1]}) \]

\[\text{Var}(z^{[l]}) = n^{[l-1]} \text{Var}(W^{[l]}) \text{Var}(a^{[l-1]}) \]

\[\text{Var}(W^{[l]}) = \frac{1}{n^{[l-1]}} \]

\[g^{[l]} = \text{RELU()} \]

\[\text{Var}(w_{kj}^{[l]} a_j^{[l-1]}) = \mathbb{E}[(a_j^{[l-1]})^2] \cdot \text{Var}(w_{kj}^{[l]}) + \mathbb{E}[(w_{kj}^{[l]})^2] \cdot \text{Var}(a_j^{[l-1]}) + \text{Var}(w_{kj}^{[l]}) \cdot \text{Var}(a_j^{[l-1]}) \]

\[\text{Var}(z^{[l]}) = n^{[l-1]} \text{Var}(W^{[l]}) \mathbb{E}[(a^{[l-1]})^2] \]

\[\text{Var}(W^{[l]}) = \frac{2}{n^{[l-1]}} \]

Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri
Proof of Xavier initialization

This started as a forward propagation analysis

\[
\text{Var}(z^{[L]}) = n^{[L-1]} \text{Var}(W^{[L]}) \text{Var}(a^{[L-1]}) = n^{[L-1]} \text{Var}(W^{[L]}) \text{Var}(z^{[L-1]})
\]

\[
= (n^{[L-1]} \text{Var}(W^{[L]}))(n^{[L-2]} \text{Var}(W^{[L-1]})) \text{Var}(z^{[L-2]})
\]

\[
= \ldots
\]

\[
= \text{Var}(z^{[1]}) \prod_{l=2}^{L} n^{[l-1]} \text{Var}(W^{[l]})
\]

Average:

\[
\text{Var}(W^{[l]}) = \frac{2}{n^{[l]} + n^{[l-1]}}
\]

With a backpropagation analysis:

\[
\text{Var}\left(\frac{\partial J}{\partial a^{[L]}} \right) = \text{Var}\left(\frac{\partial J}{\partial a^{[L]}} \right) \prod_{l=1}^{L-1} n^{[l]} \text{Var}(W^{[l]}) \quad \longrightarrow \quad \text{Var}(W^{[l]}) = \frac{1}{n^{[l]}}
\]

Definition Regularization: technique to help a model generalize better

<table>
<thead>
<tr>
<th></th>
<th>Training accuracy</th>
<th>Testing accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>98%</td>
<td>60%</td>
</tr>
<tr>
<td>Model regularized</td>
<td>92%</td>
<td>84%</td>
</tr>
<tr>
<td>Model very-well</td>
<td>90%</td>
<td>89%</td>
</tr>
</tbody>
</table>

Techniques: *Dropout, L1, L2, data augmentation, early stopping, …*
Regularization methods: L1 and L2

Goal: keeping the weights small

Loss function

\[J_{L2}(W, b) = J(W, b) + \frac{1}{2} \lambda W^T W \]

\[\frac{\partial J_{L2}(W, b)}{\partial W} = \frac{\partial J(W, b)}{\partial W} + \lambda W \]

Gradient descent update rule

\[W = W - \alpha \frac{\partial J_{L2}}{\partial W} \]

\[= W - \alpha \left(\frac{\partial J}{\partial W} + \lambda W \right) \]

\[= W \left(1 - \lambda \alpha \right) - \alpha \frac{\partial J}{\partial W} \leq 1 \]

What about L1?
Regularization methods: L1 and L2

Goal: keeping the weights small

Loss function

\[J_{L1}(W, b) = J(W, b) + \frac{1}{2} \lambda \|W\|_1 \]

\[\frac{\partial}{\partial W} J_{L1}(W, b) = \frac{\partial J(W, b)}{\partial W} + \lambda \text{sign}(W) \]

Gradient descent update rule

\[W = W - \alpha \frac{\partial J_{L1}}{\partial W} \]

\[= W - \alpha \left(\frac{\partial J}{\partial W} + \lambda \text{sign}(W) \right) \]

\[= W - \alpha \frac{\partial J}{\partial W} - \alpha \lambda \text{sign}(W) \]
Regularization methods: L1 and L2

Goal: keeping the weights small

Loss function

\[J_{L1}(W, b) = J(W, b) + \frac{1}{2} \lambda \|W\|_1 \]

\[\frac{\partial J_{L1}(W, b)}{\partial W} = \frac{\partial J(W, b)}{\partial W} + \lambda \text{sign}(W) \]

Gradient descent update rule

\[W = W - \alpha \frac{\partial J_{L1}}{\partial W} \]

\[= W - \alpha \left(\frac{\partial J}{\partial W} + \lambda \text{sign}(W) \right) \]

\[= W - \alpha \frac{\partial J}{\partial W} - \alpha \lambda \text{sign}(W) \]
Visualizing regularization (L1/L2)

Minimum of J

Minimum of J_{L2}

Minimum of $\lambda W^T W$

Minimum of J_{L1}

Minimum of $\lambda \|W\|_1$
Early stopping

- Error vs. number of iterations
- Test error
- Train error
- Optimal test error
- Optimal number of iterations

How is that a regularizer?
Visualizing early stopping

Minimum of J

Best training loss we can do

Starting value of the cost

$\alpha \times (\text{num_iterations})$
Data augmentation

More data generally means better generalization

Tricky problem 1

- I augmented my data, but my algorithm’s performance is worse than before

Tricky problem 2

- We are a car manufacturing company building a personal vocal assistant, we observe that our model doesn’t generalize well.

Tricky problem 3

- Data synthesis in speech recognition and trigger word detection.
Announcements

Check out the project example code (cs230-stanford.github.io)

For Thursday 02/08, 9am:

C2M2
 • Quiz: Optimization algorithms
 • Programming Assignment: Optimizations

C2M3
 • Quiz: Hyperparameter tuning, batchnorm, programming frameworks
 • Programming Assignment: Tensorflow

Tonight:
 • Project proposal
 • Fill-in AWS Form to get GPU credits (those who forgot