CS230: Lecture 8
 Word2Vec applications + Recurrent Neural Networks with Attention

Kian Katanforoosh, Andrew Ng

Today's outline

We will learn how to:

- Generalize results with word vectors
- Augment a RNN with Attention mechanisms
I. Word Vector Representation
i. Training
ii. Operations
iii. Applications: debasing / restaurant reviews
II. Attention
i. Machine Translation
ii. Image Captioning

Word Vector Representation

vocabulary

one-hot representation

word-vector representation

Word Vector Representation: Training

1. Data?

window
Stanford is going to beat Cal next week

Target word (\mathbf{x})	Nearby word (\mathbf{y})
Stanford	is
is	Stanford
is	going
going	is
going	to
\ldots	\ldots

target
$v_{\text {football }}=$
loss? $\quad L=-\sum y \log (\hat{y})$

Word Vector Representation: Embedding matrix

Word Vector Representation: Visualization and Operations

Scatter plot of Word vectors

Operations on vectors

Word Vector Representation: bias

Sexist bias

$$
\begin{aligned}
& \text { man }- \text { king }=\text { women }-x \\
& x=\text { queen }
\end{aligned}
$$

Extreme she occupations

$\begin{array}{lll}\text { 1. homemaker } & \text { 2. nurse } & \text { 3. receptionist } \\ \text { 4. librarian } & \text { 5. socialite } & \text { 6. hairdresser }\end{array}$
4. librarian
5. socialite
7. nanny
8. bookkeeper
9. stylist
10. housekeeper
11. interior designer
12. guidance counselor

1. maestro

Extreme he occupations
4. philosopher
2. skipper
3. protege
7. financier
5. captain
6. architect
10. magician
8. warrior
11. figher pilot
9. broadcaster
12. boss Occupations such as businesswoman, where gender is suggested by the orthography, were excluded.

Gender stereotype she-he analogies.

sewing-carpentry nurse-surgeon blond-burly giggle-chuckle sassy-snappy volleyball-football
register-nurse-physician
interior designer-architect feminism-conservatism vocalist-guitaris diva-superstar cupcakes-pizzas
housewife-shopkeeper
softball-baseball cosmetics-pharmaceuticals petite-lanky
charming-affable
hairdresser-barber

Gender appropriate she-he analogies
queen-king
waitress-waiter
mother-father
convent-monastery

Figure 2: Analogy examples. Examples of automatically generated analogies for the pair she-he using the procedure described in text. For example, the first analogy is interpreted as she:sewing :: he:carpentry in the original w2vNEWS embedding. Each automatically generated analogy is evaluated by 10 crowd-workers are to whether or not it reflects gender stereotype. Top: illustrative gender stereotypic analogies automatically generated from w2vNEWS, as rated by at least 5 of the 10 crowd-workers. Bottom: illustrative generated ender-appropriate analogies

Word Vector Representation: Application

Sentiment analysis on restaurant reviews

1. Data?

50 reviews

Review (x)
"Tonight was awesome"
"Worst entrée ever!"
Label (Negative/

Worst entree ever! 0
2. Architecture?

3. Loss?

$$
L=y \log (\hat{y})+(1-y) \log (1-\hat{y})
$$

Word Vector Representation: Application

To remember:

- In NLP, Words are often represented by "meaningful" vectors
- These vectors are trained thanks to a Neural Network
- We can do operations on these vectors
- They can be biased, depending on the dataset used to train them
- They have a great generalization power

Attention: Motivation

Neural Machine Translation

Encoder

"Brian"	"est"	"dans"	"la"	"cuisine"	<eos>
${ }_{\operatorname{argmax}} \uparrow$	$\underset{\operatorname{argmax}}{ } \uparrow$	$\operatorname{argmax} \uparrow$	$\operatorname{argmax} \uparrow$	$\underset{\operatorname{argmax}}{ } \uparrow$	$\operatorname{argmax} \uparrow$
$\left(\begin{array}{l} 0.11 \\ \vdots \\ 0.02 \end{array}\right)$	$\left(\begin{array}{c} 0.11 \\ \vdots \\ 0.02 \end{array}\right)$	$\left(\begin{array}{c}0.11 \\ \vdots \\ 0.02\end{array}\right)$			
\uparrow	\uparrow	\uparrow	\uparrow	+	\uparrow
softmax	softmax	softmax	softmax	softmax	softmax
$S_{1} \uparrow$	$S_{2} \uparrow$	$S_{3} \uparrow$	$S_{4}{ }^{\uparrow}$	$s_{5} \uparrow$	$s_{6} \uparrow$

Attention: Motivation

|Inverting input works better?!!|

Neural Machine Translation with Attention: Problems \& Ideas

Some problems:

- The encoder encodes all information in the source sentence into a fixed length vector
- While it seems that some specific parts of the source sentence are more useful to predict some parts of the output sentence
- Bad performances on long sentences

Ideas:

- We'd like to spread the information encoded from the source sentence and selectively retrieve the relevant parts at each prediction of the output sentence
- Why don't we use every hidden state hj from the encoding part?

Attention: Motivation

"kitchen" "the" "in" "is" "Brian" <eos> "Brian" "est" "dans" Kian" katanforocsnishinde"

Attention: Motivation

$\begin{array}{cc}\uparrow & \uparrow \\ \left(\begin{array}{l}0.32 \\ \vdots \\ 0.64\end{array}\right)\end{array}\left(\begin{array}{l}0.32 \\ \vdots \\ 0.64\end{array}\right) \quad\left(\begin{array}{l}0.32 \\ \vdots \\ 0.64\end{array}\right)$
$\frac{W^{[1]} \times \ldots}{\uparrow} \frac{W^{[1]} \times \ldots}{\uparrow}$

$h_{4}=$ contains information about the input sentence up to "is" with a stronger focus on the parts closer to "is"

$$
\alpha_{2,3}=f\left(s_{1}, h_{3}\right)
$$

$=$ probability that the target word y_{2} ("est") is translated from source word \mathcal{X}_{3} ("in")
(= score that went through a softmax function)
$c_{1}=$ the expected annotation over all annotations with probabilities $\alpha_{1, j}$

Neural Machine Translation with Attention: Architecture

Neural Machine Translation with Attention: Training

What are the parameters?

$$
\begin{aligned}
& \text { Encoder } \\
& \text { EmbeddingMatrix } \\
& f_{t}=\sigma\left(W_{f}\left[h_{t-1}, x_{t}\right]+b_{f}\right) \\
& i_{t}=\sigma\left(W_{i}\left[h_{t-1}, x_{t}\right]+b_{i}\right) \\
& \tilde{C}_{t}=\tanh \left(W_{C}\left[h_{t-1}, x_{t}\right]+b_{C}\right) \\
& C_{t}=f_{t} \circ C_{t-1}+i_{t} \circ \tilde{C}_{t} \\
& o_{t}=\sigma\left(W_{o}\left[h_{t-1}, x_{t}\right]+b_{o}\right) \\
& h_{t}=o_{t} \circ \tanh \left(C_{t}\right)
\end{aligned}
$$

Attention

Decoder

$$
\begin{aligned}
& c_{i}=\sum_{j=1}^{T_{x}} \alpha_{i j} h_{j} \\
& \alpha_{i j}=\frac{\exp \left(e_{i j}\right)}{\sum_{k=1}^{T_{x}} \exp \left(e_{i k}\right)} \\
& e_{i j}=v_{a}^{T} \tanh \left(W_{a} s_{i-1}+U_{a} h_{j}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
\text { LSMT: } & f_{t}=\sigma\left(W_{f}\left[h_{t-1}, x_{t}\right]+b_{f}\right) \\
& i_{t}=\sigma\left(W_{i}\left[h_{t-1}, x_{t}\right]+b_{i}\right) \\
& \tilde{C}_{t}=\tanh \left(W_{C}\left[h_{t-1}, x_{t}\right]+b_{C}\right) \\
& C_{t}=f_{t} \circ C_{t-1}+i_{\iota} \circ \tilde{C}_{t} \\
& \left.o_{t}=\sigma\left(W_{o} h_{t-1}, x_{t}\right]+b_{o}\right) \\
& h_{t}=o_{t} \circ \tanh \left(C_{t}\right)
\end{array}
$$

Loss function: $\left.\quad L=-\sum_{\text {bucch }}\left(\log P(y \mid x ; \theta)+\lambda \sum_{i \in \text { pactch }}\left(1-\sum_{t \in \text { eutput }} \alpha_{t i}\right)\right)\right)$

Neural Machine Translation with Attention: Training

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot correspond to the words in the source sentence (English) and the generated translation (French), respectively. Each pixel shows the weight $\alpha_{i j}$ of the annotation of the j-th source word for the i-th target word (see Eq. (6)), in grayscale (0: black, 1 : white). (a) an arbitrary sentence. (b-d) three randomly selected samples among the sentences without any unknown words and of length between 10 and 20 words from the test set.

Image Captioning with Attention

Image Captioning with Attention

Image Captioning

Encoder

Image Captioning with Attention

Image Captioning with Attention

Image Captioning with attention

