<u>CS230: Lecture 10</u> Sequence models II

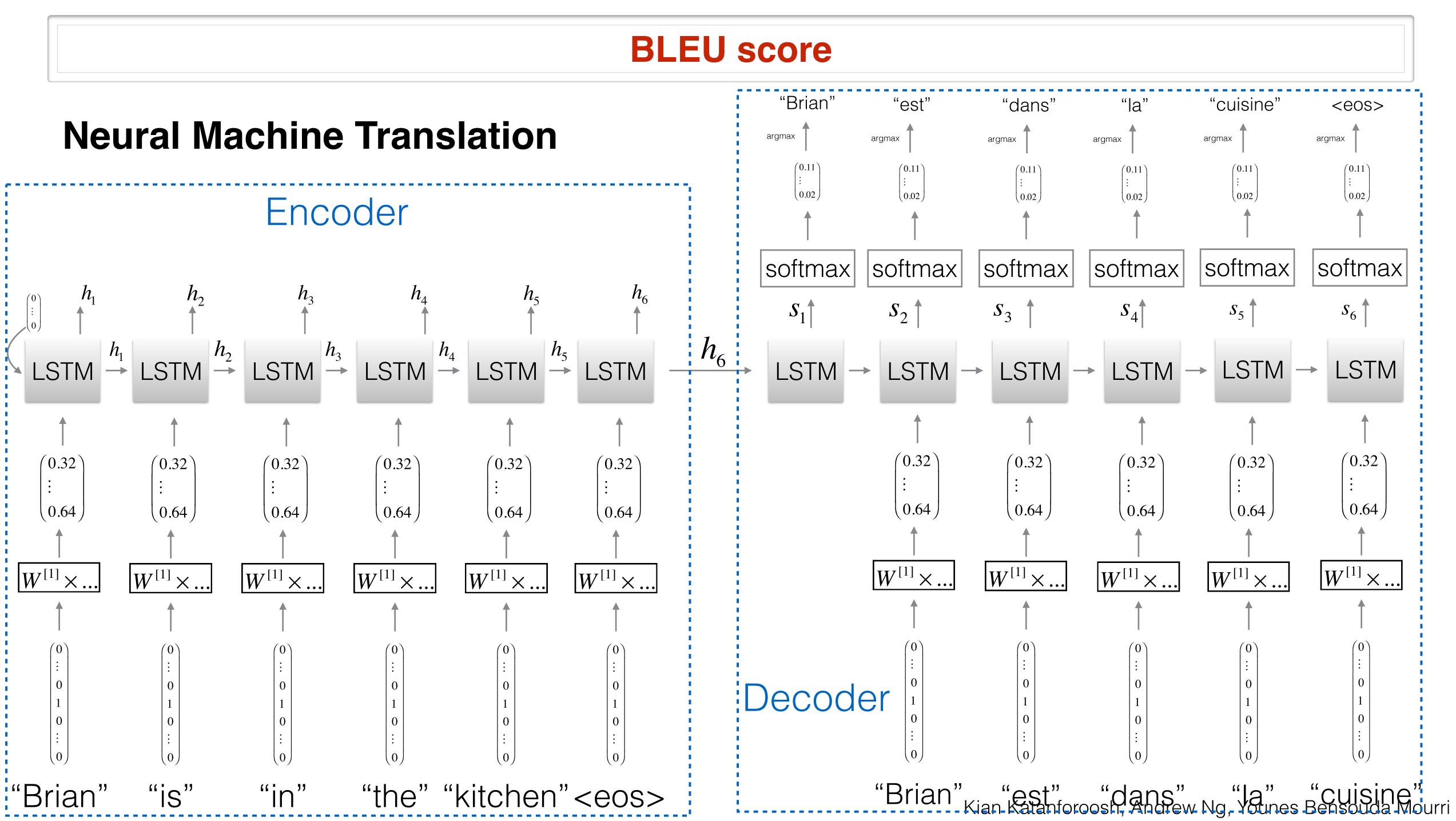
Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

We will learn how to:

- Automatically score an NLP model
- **Improve Machine** — Translation results with Beam search
- Build a speech recognition application

Today's outline

I. BLEU score II. Beam Search **III.** Speech Recognition



BLEU score

"The baby to be walking by him" "The baby walks by himself"

Motivation: Human Evaluation of MT are extensive but expensive.

Goal:

Construct a quick, inexpensive, language independent (and correlates highly with human evaluation) method to automatically evaluate Machine Translation models.

Centrale idea:

"The closer a machine translation is to a professional human translation, the better it is."

Needs two ingredients:

- a numerical "translation closeness" metric - a corpus of good quality human reference translations

In speech recognition:

Kishore Papineni et al., BLEU: a Method for Automatic Evaluation of Machine Translation, 2002

BLEU score

a successful metric is word error rate. BLEU's closeness metric was built after it.

It is a guide to action which ensures that the military always obeys the commands of the party Candidate 1

Candidate 2 It is to insure the troops forever hearing the activity guidebook that party directs.

	Human
Reference 1	It is a guide to action that ensu
Reference 2	It is the guiding principle which
Reference 3	It is the practical guide for t

Kishore Papineni et al., BLEU: a Method for Automatic Evaluation of Machine Translation, 2002

BLEU score

Machine Translations

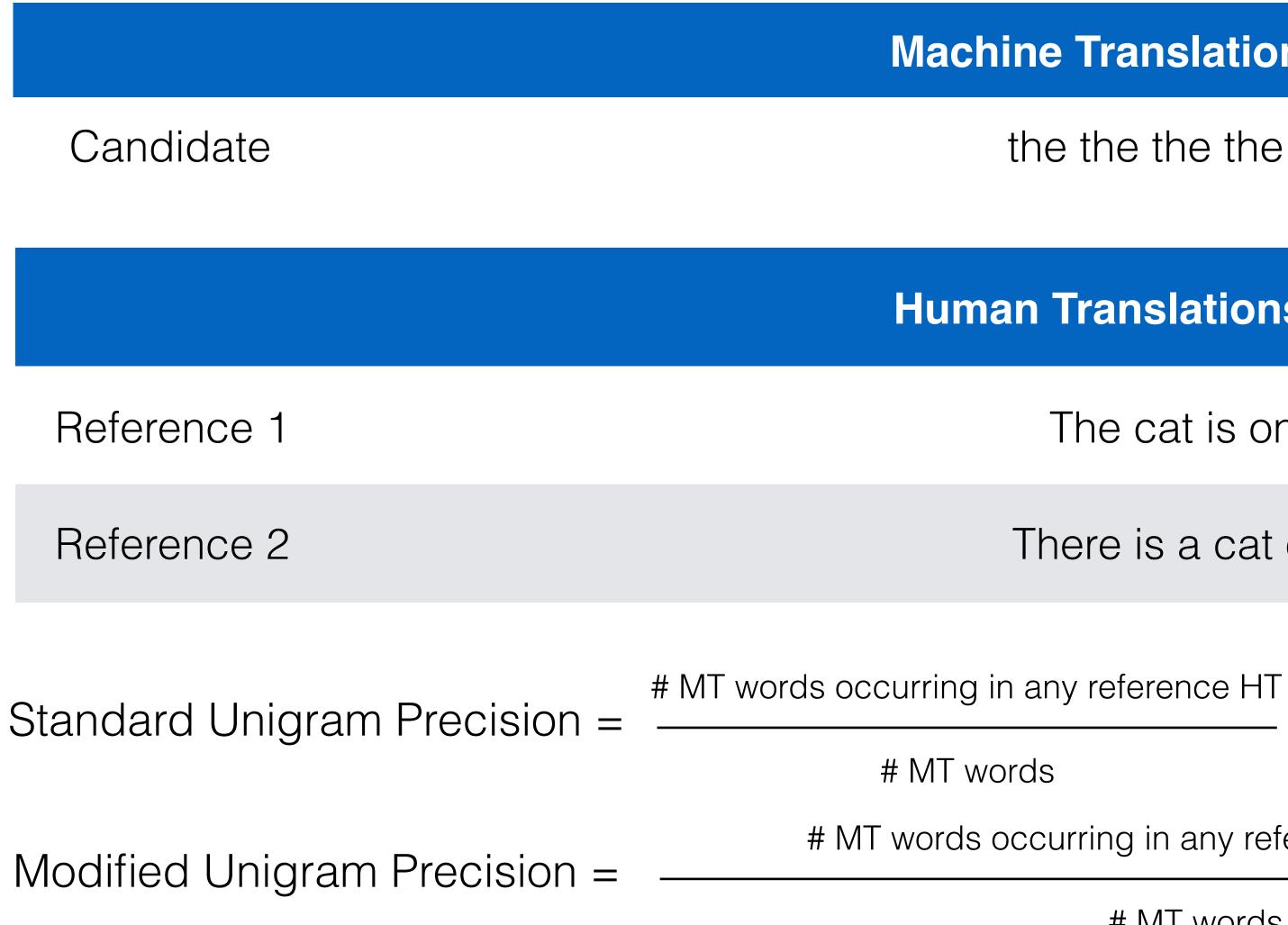
Translations

ures that the military will forever heed Party commands

guarantees the military forces always being under the command of the Party

the army always to heed the directions of the party

Unigram count as precision metric:



Kishore Papineni et al., BLEU: a Method for Automatic Evaluation of Machine Translation, 2002

BLEU score

Machine Translation

the the the the the the the

Human Translations

The cat is on the mat.

There is a cat on the mat.

= 100%

MT words occurring in any reference HT (clipped)

= 2/6 = 33.3%

MT words

				٦
_	 _	_	_	_

Machine Translations

	Candidate 1	It is a guide to action which ensures	
	Candidate 2	It is to insure the troops forev	
		Human	
	Reference 1	It is a guide to action that ensu	
	Reference 2	It is the guiding principle which	
	Reference 3	It is the practical guide for t	
# MT words oc Modified Unigram Precision (1) =			
M	odified Unigram	n Precision (2) =	

Kishore Papineni et al., BLEU: a Method for Automatic Evaluation of Machine Translation, 2002

BLEU score

es that the military always obeys the commands of the party

ver hearing the activity guidebook that party directs.

n Translations

ures that the military will forever heed Party commands

guarantees the military forces always being under the command of the Party

the army always to heed the directions of the party

ccurring in any reference HT (clipped) = 17/18 = 94%

MT words

curring in any reference HT (clipped)

= 8/14 = 57%

MT words

<u>Generalizing to modified n-gram precision metric:</u>

Modified n-gram precision =

MT n-grams occurring in any reference HT (clipped)

It is a guide to action which ensures that the military always obeys the commands of the party Candidate 1

It is to insure the troops forever hearing the activity guidebook that party directs. Candidate 2

Reference 1 It is a guide to action that ensures that the military will forever heed Party commands

It is the guiding principle which guarantees the military forces always being under the Reference 2 command of the Party

Reference 3 It is the practical guide for the army always to heed the directions of the party

Modified bi-gram precision (Candidate 1) = 10/17Modified bi-gram precision (Candidate 2) = 1/13

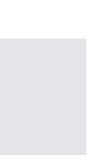
Kishore Papineni et al., BLEU: a Method for Automatic Evaluation of Machine Translation, 2002

BLEU score

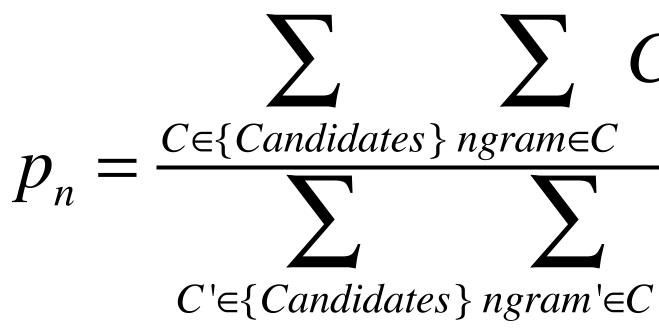
MT n-grams

Machine Translations

Human Translations



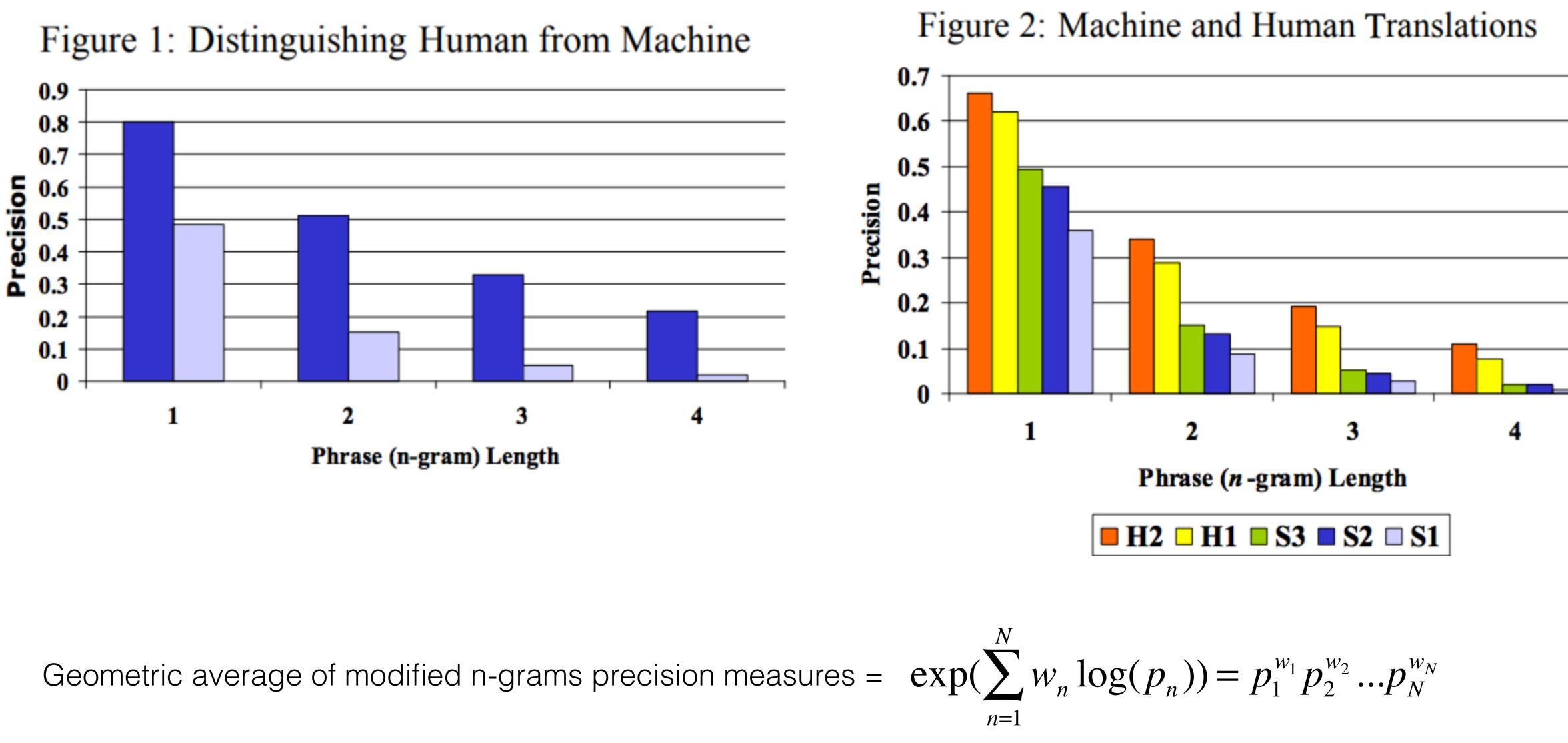
Generalizing from a sentence precision, to a corpus precision:



Kishore Papineni et al., BLEU: a Method for Automatic Evaluation of Machine Translation, 2002

BLEU score

 $\sum Count_{clip}(ngram)$ Count(ngram')



Kishore Papineni et al., BLEU: a Method for Automatic Evaluation of Machine Translation, 2002

BLEU Score

 _	_	_	_	_
				٦
			_	J
_	_	_	_	-

BLEU Score

\mathbf{O}

Sentence length too short translation too long translation				
	του σποτι παποιατισπ	L		
Machine Translations		Machine Translations		
		Candidate 1	I always invariably perpetually do	
Candidate	of the	Candidate 2	l always do	
	Human Translations		Human Translations	
Reference 1	It is a guide to action that ensures that the military will forever heed Party commands	Reference 1	I always do	
Reference 2	It is the guiding principle which guarantees the military forces always being under the command of the Party	Reference 2	I invariably do	
Reference 3	It is the practical guide for the army always to heed the directions of the party	Reference 3	I perpetually do	
Conclusion: longer translations are already penalized by the modified n-gram precision measure, not the too short translatior				

BP = Brevity penalty = decaying exponential ~

Kishore Papineni et al., BLEU: a Method for Automatic Evaluation of Machine Translation, 2002

Total length of the machine's translation

Total length of the candidate translation corpus

BLEU definition:

log(BLEU) definition:

$\log(BLEU) = \min(1)$

Kishore Papineni et al., BLEU: a Method for Automatic Evaluation of Machine Translation, 2002

BLEU Score

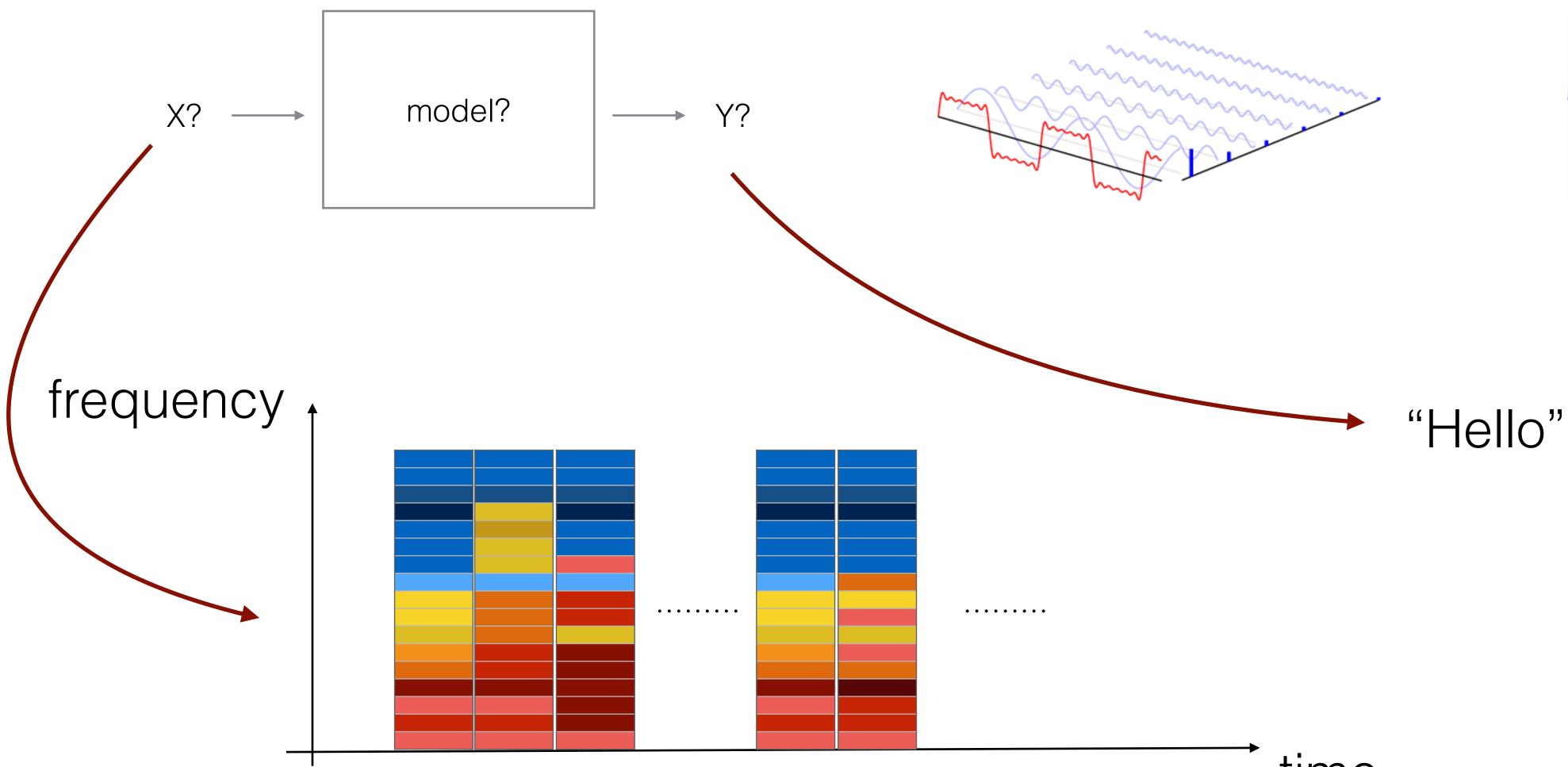
$$(-\frac{r}{c},0) + \sum_{n=1}^{N} w_n \log(p_n)$$

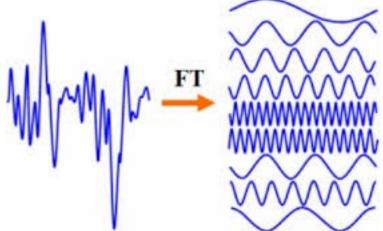
Questions

- What is the main advantage of Beam search compared to other search algorithms? It is fast, and requires less computations.
- What is the main disadvantage of Beam search compared to other search algorithms? It may not result in the optimal solution in terms of probability.
- What is the time and memory complexity of Beam search? It is O(b*Tx) in memory and O(b*Tx) in time.

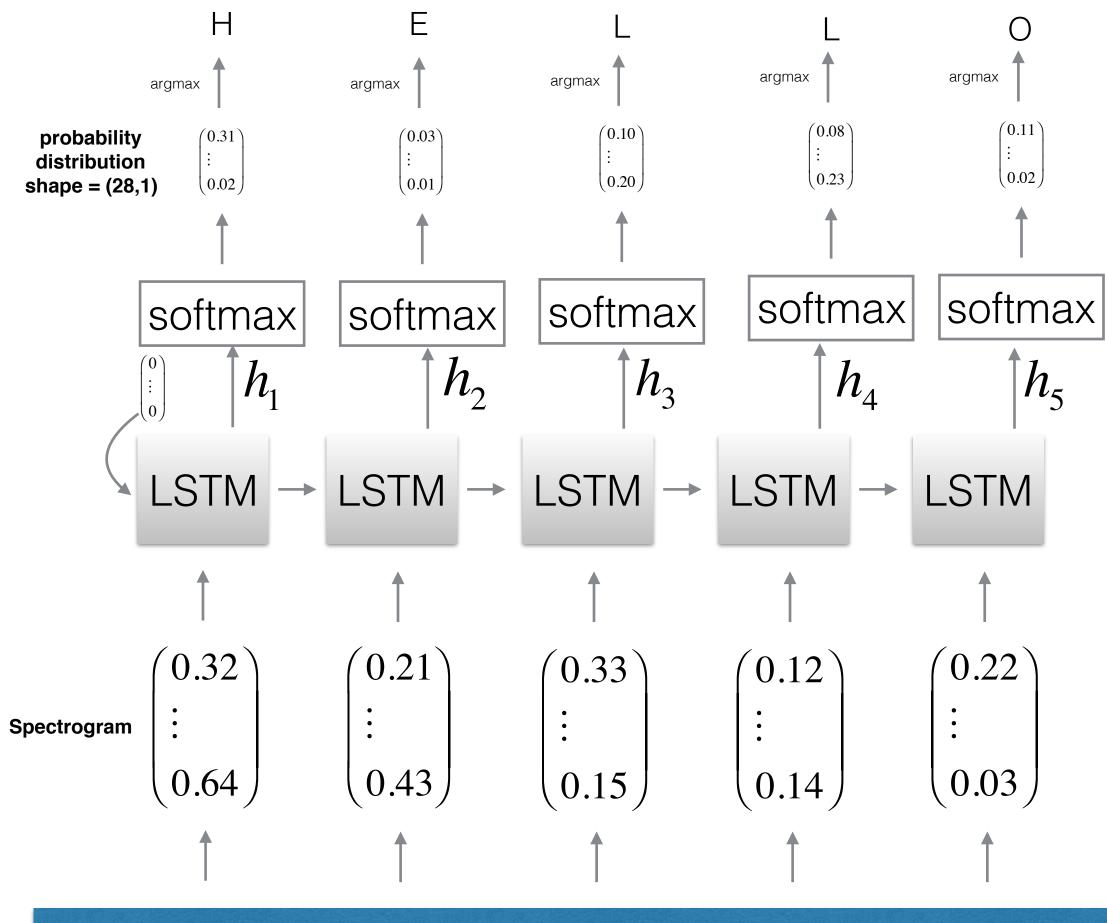
Speech Recognition Pipeline

Audio Data:





cross-entropy

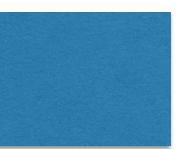


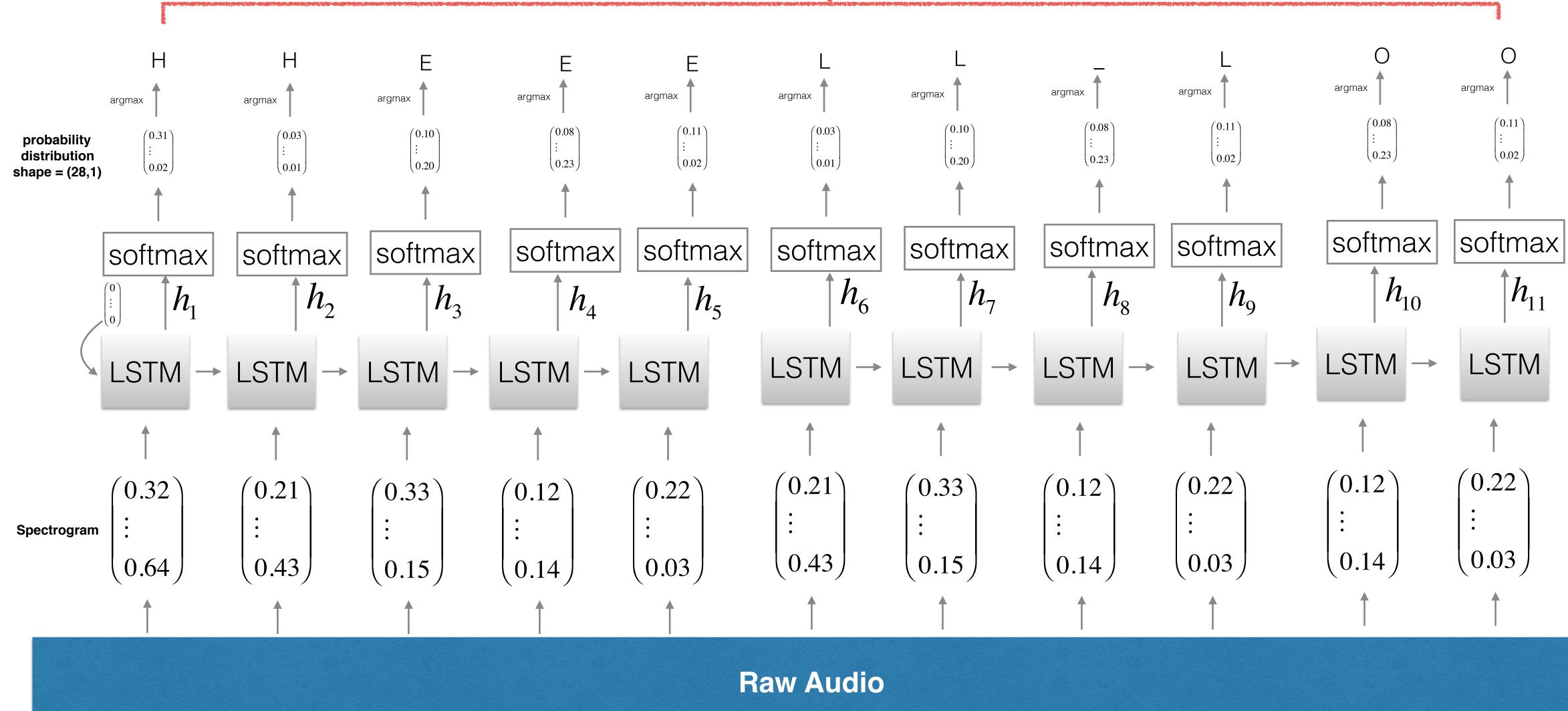
Raw Audio

Speech Recognition

This never happens in practice because:

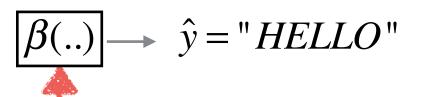
input length ≠ output length





Graves et al., 2006, Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks

Speech Recognition https://distill.pub/2017/ctc/



$\beta(HH_EEEE_LL_LOO) = "HELLO"$ $\beta(H _ E _ L _ LOO) = "HELLO"$ $\beta(H _ LLL _ OO) = "HELO"$ $\beta(BBAA NA NA NA A) = "BANANAA"$

Speech Recognition

Examples

Independence assumption

 $P(c|x) = \begin{bmatrix} 0.13 & HH_E__L_L_LL_OO \\ 0.04 & H_EE_L_L_LL_HO \\ 0.03 & HH_E__L_LL_OO \\ 0.01 & H_EE__L_LL_OO \\ 0.001 & H_I_ILL_L_OOO \\ \vdots & \vdots \end{bmatrix}$

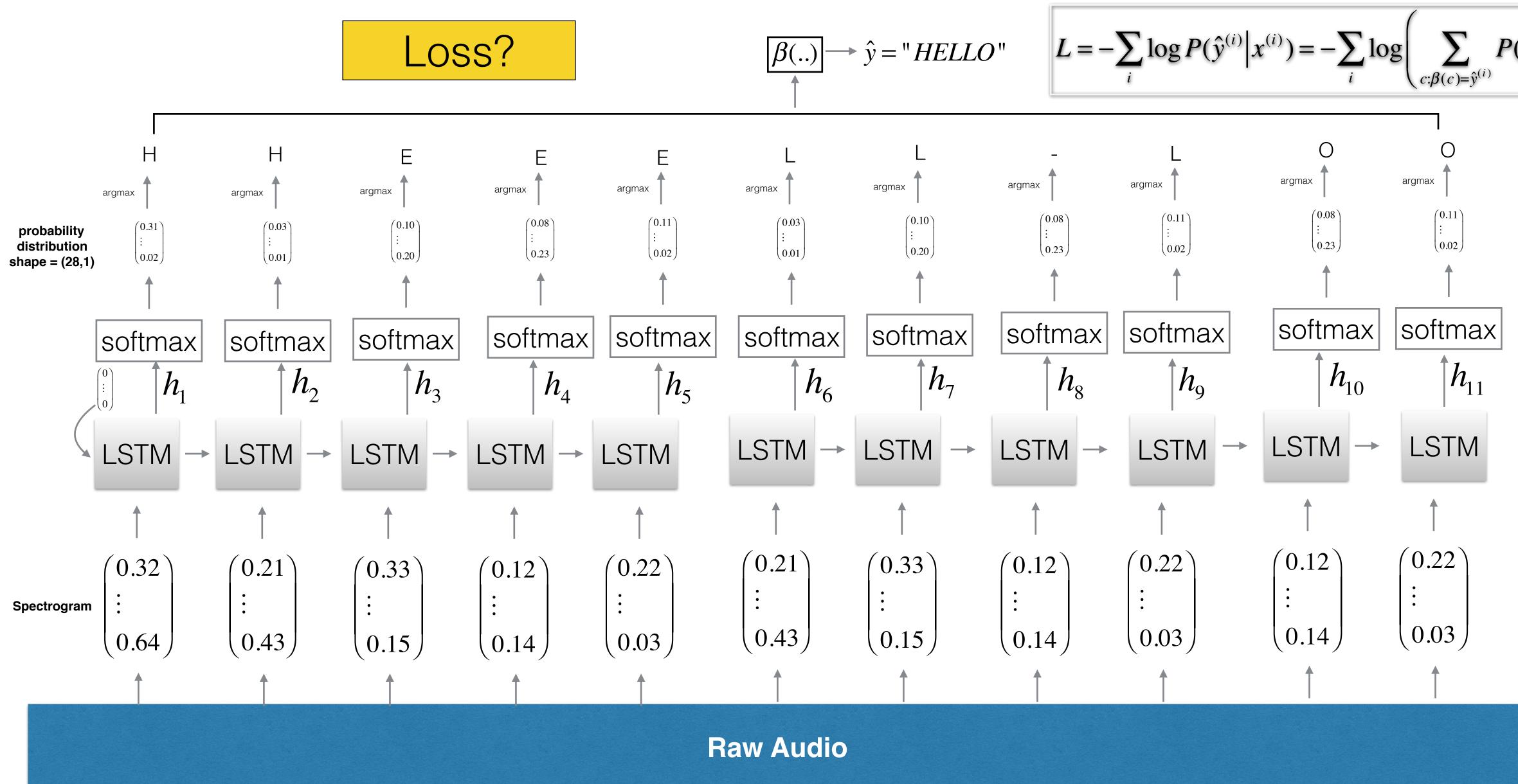
P("HELLO") =

Speech Recognition

 $P(c_1|x) = \prod^{T_x} P(c_1^{\langle t \rangle}|x)$

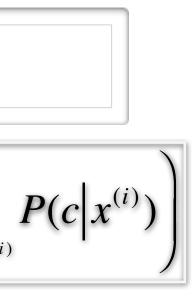
 $P(y|x) = \sum_{c:\beta(c)=y} P(c|x)$

Loss?



Graves et al., 2006, Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks

Speech Recognition



BEAM SEARCH > MAX DECODING :)

Graves et al., 2006, Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks

Speech Recognition

Inference?

$$L = -\sum_{i} \log P(\hat{y}^{(i)} | x^{(i)})$$

Graves et al., 2006, Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks

Speech Recognition

 $P(c|x^{(i)}) = -\sum_{i} \log \left(\sum_{c:\beta(c)=\hat{y}^{(i)}} P(c|x^{(i)}) \right)$

Implementations of CTC loss

tf.nn.ctc_loss(...) Keras -> Custom loss

- How to incorporate information about the future?
- What's the consequence of $P(c_1|x) = \prod_{i=1}^{T_x} P(c_1^{\langle t \rangle}|x)$ (conditional independence)? A model like CTC may have trouble producing such diverse transcripts for the same utterance because of conditional independence assumptions between frames. But, on the other hand, it makes the model more robust to a change of settings.
- What is the problem with our output \hat{y} ? CTC model makes a lot of spelling and linguistic mistakes because P(y|x) directly models audio data. Some words are hard to spell based on their audios.
- Can you think of any practical applications leveraging this model? Lipreading.

Assael et al., LipNet: end-to-end sentence-level lipreading, 2016 Hannun, "Sequence Modeling with CTC", Distill, 2017. Chan et al., 2015, Listen, Attend and Spell

Speech Recognition

Closing questions:

A good way to efficiently incorporate future information in speech recognition is still an open problem.

