

\iint Stanford University Dense-Captioning Videos with Learnable Pooling 🖺 Stanford University

Songze Li, Julio A. Martinez, Parker Miller

Introduction

Goal: Better describe video events with natural language using past, present, and future events within a given video.

Applications: Video guery search, ad content matching, video multimedia editing, security, and more.

Random sample of videos from **ActivityNet Captions**: 2000 train, 250 validation, and 250 test.

Method & Model

Baseline Attention Module:

- · Max pooling applied to all C3D-PCA feature vectors
- Output = concatenation of pooled representations of past, present, and future

$$h_i^{past} = \frac{1}{Z_i^{past}} \sum_{j \neq i} 1\{f_j^{end} < f_i^{end}\} a_{ij} h_j$$

$$Z_i^{past} = \sum_{j \neq i} 1\{f_j^{end} < f_i^{end}\}$$
 $w_i = w_a h_i + b_a$
 $a_{ij} = w_i h_j$

Future features are analogous Vectorized for efficient computation

NetVLAD (Learnable Pooling):

· Computes clusters in the input features and residuals from the input features to the cluster center, then multiplies to a softmax

$$VLAD(j,k) = \sum_{i}^{N} softmax(h_i)(h_{ij} - c_{k,j})$$

(nonlinear relationship between C3D frame features)

Context Gating (CG)

$$CG(X) = \sigma(WX + B) * X \label{eq:condition}$$
 (quadratic relationship between NetVLAD output features X)

Captioning Module:

· Concatenation of Word Embeddings and CG output as input to 2-layer LSTM. Each step of LSTM has identical values for proposal activations with the corresponding word embedding for that time step.

Caption Generation (test):

- · Greedy search
- Sampling
- · Beam search

Loss Function & Optimization:

- · Cross Entropy
- · Gradient Descent with Momentum
- · Adam Optimizer

Results & Analysis

BLEU Mean Values				
Model	B1	B2	B3	B4
Baseline	0.542	0.533	0.554	0.585
NetVLAD	0.607	0.589	0.592	0.598

Attention Weights:

Future Work

- GPU support from Adobe to train on 20k videos
- Combine strengths of NetVLAD and baseline
- · Evaluate captions with METEOR and CIDEr metrics