Neural Networks For Santander Customer Satisfaction

Team: Sam Schwager, Scott Morris, Nick Steele. {samsgs, swmorris, nsteele} @stanford.edu

Predicting:

Customer satisfaction is an important metric for success
for large financial institutions such as banks. Unhappy
customers don’t come back, and are hard to detect since
they often don’t voice displeasure before leaving. Two
years ago Santander Bank launched a Kaggle competition
to identify dissatisfied customers, with a $60,000 prize
pool. We created a deep learning algorithm that gives
0.794 score on the test data set despite weighting towards
a balanced distribution.

Models:

‘We used fully connected neural networks with varying
numbers of hidden layers and Xavier weight
initializations.

‘We started using a standard logistical loss function, which
performed very well on the AUC metric that the
competition uses.

Loss (yh, yored) = yriklog(yrred) + (1= y™™*)(1 ~ log(y™*d))

However, when we examined our predictions and found
nearly all of them to be zero's (which naturally performs
very well given the data imbalance), we updated the loss
function to penalize missed ones.

Loss (™", y"*) =k = y"™"1ogy?"*) + (1= y"™")(1 — log(""*))
‘We tuned this lambda hyperparameter until our model

predicted ones with a similar frequency as represented in
the underlying data.

Features:

Each example has 370 numerical anonymized features, all
given to us by the Kaggle competition. We did not derive any
features, as in theory the network will automatically do so.
However, we did mean-variance normalize each feature.

Data:

All data was given to us in the Kaggle competition
(there are 68418 training examples). The rows are
individual customers, and the columns are
anonymized features. Each customer is labeled
with a 1 or o for satisfied or unsatisfied.

Layer Number vs costs

— layers_2

layers_3
— layers_4
— layers_5
— layers_6
— layers_7

layers_10

6000000
5000000
4000000
g 3000000
2000000

1000000

0

0 20 0] 80 100

snnche

Ensemble Size vs AUC Score

dev_costs

Layer Number vs dev_costs

3000000
2500000
2000000
1500000 layers_10

1000000

500000

[

epochs
Layer Number vs auc

0 5 10 15 20 3 Ed
number of models

Discussion:

— layers_2

layers_3
— layers_4
— layers_S
— layers_6
— layers_7

layers_10

epochs

Results:

‘We used 80% of our data for training
10% for dev, and 10% for test. The
charts show various metrics with
different hyper-parameter choices.
‘We used an ensemble approach with
30 models on our test data and
computed an AUC to 0.794 , not from
the competition winning 0.829. This
is depite the fact that we
intentionally weighted our loss
function away from optimization on
the AUC to ensure prediction of 1s.

Future Work:

The next few steps would likely
include analyzing the features more
concretely and attempting to
develop some sort of intuition for the
data.

We noticed a marked improvement in performance from before tuning the number of hidden layers and using model
ensemble (from low .7s accuracy on the dev set), to afterwards (our best model yielded 0.794 AUC on the test set set).
Our model of a multi-layer neural network is a reasonable choice for the problem at hand. These tuning techniques
allowed us to test a wide variety of networks and ultimately settle on one that preformed best on the test set. The
Kaggle competition winner had an AUC score of .829072 on the test set. While our score did not quite match the
winner’s, we are happy that we were able to create a competitive algorithm, especially given our loss function
modification that heavily encouraged the output of ones.

