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% Problem: Music learners often encounter the challenge of arranging chords for melodies, because of their % Input: melody windows of a fixed size weaices oot oo (|| [ 0000000000000

lack of music theory knowledge. <+ Numerical embedding softnax

“ An automatic chord arrangement tool that uses a LSTM model to generate chord for a given input “ All hidden states LSTM into a linear layer
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<+ Chord arrangement involves both conventional rules and creativity.

<+ Ideal model: Generate chords that fit the melodies and follow the rules of progression, with a certain Final: sequence classification
level of variation in outputs. < Input: previous chords, melody of current bar e argaax —Eu‘nn(Za] Mitoss
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» Teach new learners of composition patterns of chord arrangement <+ Concat the non-padded final state of LSTMs S concat :
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DATA RESULTS AND DISCUSSION
% 2,252 lead sheets from Wikifonia (left image) < Baseline: Root note accuracy of 0.295
» Posted by Music Audio Research Group in Seoul National University » Result cannot be used practically, since does not specify initial position of chords
« 1,802 sheets (72,418 bars) in training set, 450 (17,768 bars) in testing set « Final: best result comes from Unidirectional LSTM with weighted loss
< Time signature, measure (bar), key, chord (root note, type) and note (root, octave, duration) train (72,418 bars) test (17768 bars)
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% Mostly one chord for each bar
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% Over 2/3 inexact predictions also resonant well (fifth, forth, major/minor third intervals)
« 0.70 accuracy on chord types, but only due to the disproportional amount of major chords
“ Previous chords need bigger hidden dimensions than melodies

FUTURE

< Transpose and augment dataset to test how this model generalize chord progressions

FEATURES
Convert all notes and rests to equal temperament numerical expressions (0-13, ignore octave)

Divided the duration of notes by each rhythmic unit (time signature), one note entrance per unit
«“+ More sophisticated loss functions that weight how well the predictions harmonize with the melody
Convert labelled chords to root notes and intervals (major—[+4, +7]) (right image)
“ Make a chord-writing app
Record previous chord progressions for each bar
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DATA

2,252 lead sheets from Wikifonia (left image)

> Posted by Music Audio Research Group in Seoul National University

% 1,802 sheets (72,418 bars)in training set, 450 (17,768 bars)in testing set

% Time signature, measure (bar), key, chord (root note, type) and note root, octave, duration)

% Mostly one chord for each bar

FEATURES

% Convert all notes and qual ical expressions (0-13, ignore octave)
# Divided the duration of notes by time signature, one note entrance per rhythmic unit
# Comvert labelled chords to root notes and intervals (major—(+4, +7]) (right image)

% Record previous chord progressions for each bar
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* Predict the root note, then use the predicted

note to predict chord type.
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