Music Generation Using Recurrent Neural Network Models

Gabriel Voorhis-Allen, Cade May, KK Mokobi

Department of Computer Science, Stanford University

Introduction Data Processing Discussion of Results (contd.)

For this project, we sought to produce a generative model which could produce artistic results
after being trained on human-made creative art. Music is a very artistically rich domain, but can also be
broken down into data (as it simply consists of sequences of pitch frequencies at varying rhythms and
tempos). Thus, we decided to create a model to perform classical musical generation We chose to train
a recurrent neural network (RNN) with Long-Short Term Memory (LSTM), a type of neural network
used for sequential information with l%g-teml patterns, like musical fi@fata.

3 Layer LSTM (source:google.com)

Music stored in MIDI musical files (MIDI files effectively package musical data and allow for its
manipulation)

10/3/3 dataset split; 10 songs for training set, 3 for development, and 3 for testing.

The training set had 11,000 sequences of musical data of length 100ms each.

Musical genre was piano-only classical music, which allowed the model to focus on producing the
best single-track output possible, instead of being required to optimize multiple-track and
multiple-instrument data.

Datasets consists only of songs with a 4/4 time signature, allowing the model to focus on rhythm and
pitch sequencing without encountering conflicting beats per measure.

We evaluated a wide range of Most of
ConviD (126)

the models we worked with involved a recurrent neural

network base. On top of this GRU or LSTM base, we
7= |

(Dense), BatchNorm, Separable Convolution, and more.

Fig 1: MIDI files converted to
notes using music21 parsing
function, and a mapping
function is used to create
integer-based training data

R B oo

mid files strings created from

note objects

Integer-based categorical data

mid s

strings created from
note objects

Integer-based categoricaldata

Fig 2, right: Predicted results 1

E
(ionvened to notes using a mapping Ko '3
function, and written to MIDI files -F

using music21 functions

1) Convert data from .mid files to integer-based categorical data using mapping
functions and functions from music21 package

2) Fitmodel: calculate loss using categorical cross entropy

3) Generate music using model to predict integer values that we then convert to
notes, and use music 21 stream to write to MIDI file

esults, Hyperparameter Tuning, and Architecture Se

+ With respect to our quantitative metrics, all of our models exhibited characteristics
of high variance, as shown in Fig 1

 The numerical evaluation of our models involved the categorical cross-entropy
function.

Fig: An sample of our model’s MIDI output, displayed in Garageband

1 N J R R
CCE:—NZZ)JJ~Iag(y/-)+(l —y) - log(1-3)

The categorical cross-entropy loss function.

Summary and Future Work

We had lofty goals to start this project: we envisioned a general-purpose music

Build: Baseline: ConviD,2 | 1LSTM256, | ConviD-128, | SesabeConid. | ConviD256, | ConviD,2
4LSTM-256, = LSTM-256, Dropout 20RU-256, | 2Tt 3LSTM128, = LSTM-256,
Dropout Dropout Dropout. Dropout BatchNorm

Train Acc:. 094 083 084 095 084 084 083

TestAcs: 060 088 068 079 094 323 073

Table 1 above displays the qualitative results of some of our models.

cussion of Results

which, given a MIDI file of music, would produce similar-sounding music
We were able to accomplish our core task; the different models we trained generate
music of varying degrees of quality, and our best model (a two-layer LSTM network
with a Conv1D layer and dropout) produced adequate-sounding music after being
trained for 860 epochs. However, our project could be improved by loosening the
simplifying restrictions that we put in place along the way

We plan to improve our networks to be robust to larger and more complex
datasets: music from a wider array of genres, with more instruments, and with varied
time signatures. We believe that the model we’ve trained will be largely transferrable to
accomplishing this more complex task, although we will need to perform many more
iterations than the 860 we achieved this time. We do plan further changes to the model
itself as well, incorporating it ion to produce less
complex, but better-sounding output.

All of the training and testing accuracy values
displayed in the results section were produced by models
that were trained for 200 epochs, except for the 2nd
model, labeled “Conv1D, 2 LSTM-256, Dropout.” This
model was trained for 860 epochs. Based on promising
results that we found in the outputs of this model in its
early stages, we decided to train it for a lot longer. It is
from this model that we obtained our best music sample.
This is the model that is displayed in the figure to the left.

experimented with Convolution1D, TimeDistributed

These results were the result of evaluation of the generated music, both in terms of
empirical study (py loss) and quali analysis (ing surveys on
music quality of various models).

We spent a lot of time on architecture search, exploring a wide breadth of models, but
the superior performance of the Conv1D/LSTM-256 model, which was trained over
860 epochs, indicates that many of the other models could have benefitted from further
epochs of training

References

« D. Gallegos and S. Metzger. “LSTiestoM: Generating Classical Music.”
CS230: Deep Learning, Winter 2018.

« Skali, Sigurdur. “How to Generate Music Using a LSTM Neural Network in
Keras.” Towards Data Science, Medium, 7 Dec. 2017.

