# Medical Informatics: Segmenting post-stroke lesions with Deep Learning



## **Problem Statement**

Stroke is a leading cause of disability in the US.

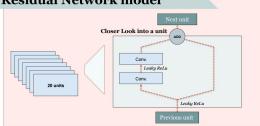
It is the 5<sup>th</sup> most frequent cause of death in the United States, killing nearly 130,000 people a year (128,978). That's one in every 20 deaths. (Stroke Association).



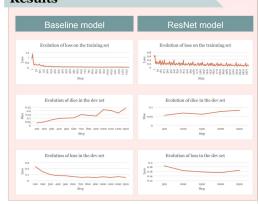
# Deep Learning Opportunity

Research on the relationship between brain MRI scans and the recovery process is currently **constrained** by the **lack of large datasets of segmented post-stroke** 

**Developing an algorithm** that is able to segment in an efficient, accurate way **would set the standard and enable the generation of these valuable datasets.** 


#### **Dataset**

- To design and train the algorithm ATLAS (Anatomical Tracings of Lesions After Stroke), an open source dataset of 229 manually segmented lesions.
- Image input size: [232, 196, 1]


# **Baseline model** 8-layer Convolutional Neural Network **Features** Sigmoid cross entropy

- Learning rate = 0.001
- Dropout factor: 0.15
- Mini-batch size = 100
- function
- Adam optimizer

# **Residual Network model**



## **Results**



### References

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep  $residual\ learning\ for\ image\ recognition.$  In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Identity  $mappings\ in\ deep\ residual\ networks.$  In European Conference on Computer Vision (pp. 630-645). Springer,

Zagoruyko, S., & Komodakis, N. (2016). Wide residual networks. arXiv preprint arXiv:1605.07146.

Rosario Errazuriz, Ayush Jain, Ray Zhong - GSB MBA Class of 2019