ENGINEERING

Introduction

Neural networks could improve on existing hashing
schemes found in databases by learning properties
of the data being indexed. A recent paper “The
Case for Learned Index Structures” argues that
indexes are really models which can be
approximated by neural networks. In short, Deep
Learning could achieve better hash table utilization
when storing indices.

Problem Statement

Point indexes are simple and its goals are exactly the same
as a hash function. We want to map one set of data to
unique buckets and minimize collisions. We explore the
challenges in using neural networks to learn a specific type
of index: a point indexes.Following the example set by
Kraska et al. we seek to implement the recursive index
model to map timestamps (our input) to unique indices (our
output) in a hash table.

Dataset

Nasa Webserver Logs (Time) = Two month's worth of all
HTTP requests to the NASA Kennedy Space Center
WWW server in Florida.

Features
timestamp Convert to epoch time
request given in quotes.

HTTP reply code.

Learned Index : Point Index

Methods & Models

Rahul Palamuttam
Stanford University

Results

We utilized the recursive index model

(RMI) presented in the paper. It i
to a B-tree structure in that a mo

s similar

del at Data 1 Layer RMI

stage /will pick a sub-model among &,

models for the subsequent layer.
stage predicts the position. The
at each stage are shallow neural

networks. We compute the 12 loss at each

. The last

9 9
fnodels Weblog 10% 55%

stage. The equations governing the Linear 65% 45%

recursive index model is given below.

L= 3 (fMers@/ND)
(z.y)

Quad 45% 35%

a2
v) Recursive Index Model Accuracy

Discussion

Unlike traditional goals of a model learning from a training set
and generalizing well on a test set, the goals here were to
literally memorize the training set.

While we were able to achieve a high threshold on the synthetic
linear dataset (as expected) a real world timestamp dataset was
too hard to learn. We can closely approximate it, but as
evidenced by a the cumulative distribution function an exact
match would require many more iterations, and more stages.

Kraska et al. claims that the model itself trains in under an hour
(minutes). However, after replicating the model as close to the
paper as possible (clearly they utilize many more stages and
more models per stage) the exact engineering effort to do this is
missing from the paper details.

It's interesting to note that the recursive index model performs
Worse on the linear and quadratic datasets than the simple 1

Lo= Y (folx) —y)®

()

layer.

NASA Dataset Log Time CDF

80ss sods 8050 8052 80s4 80s6
1e8

Cumulative Distribution Functions differ in shorter ranges

Conclusions

e Astrong case is made that neural networks
could be used as index approximators in
databases.

While the work was inspired by the idea that
indexes are really models, it could also be
said that models are also indexes. By this
reasoning we should be able to handle
deletes as an operation that “undoes” a
gradient update for a set of items being
removed from the hashtable.

Apart from asking the authors what exactly
their hyperparameters were, | think for
learned indexes to be of practice use there
needs to be a way to account for inserts and
deletes in a learned index model. This could
be a promising next research goal for
subsequent work.

Training Parameters : AdamOptimizer, Learning Rate = 0.001,
Shallow Networks of two hidden layer and 32 neurons.

References

[Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey
Dean, Neoklis Polyzotis: The Case for Learned
Index Structures. SIGMOD Conference 2018:
489-504

INoam Shazeer, Azalia Mirhoseini, Krzysztof
Maziarz, Andy Davis, Quoc V. Le, Geoffrey E.
Hinton, Jeff Dean: Outrageously Large Neural
Networks: The Sparsely-Gated
Mixture-of-Experts Layer.
[CoRRabs/1701.06538 (2017)

http://ita.ee.Ibl.

mi

