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Model
Daily USDJPY exchange rates are influenced by a host of factors ranging
from macroeconomic trends, expectation of monetary policies and
SPeCUIatlve_ investor action base_d oln p?St prlce- ac.tlons. A deep neural providing robust prediction since price contains all past relevant information. Other h?] - ReLu(Wh[l]Xt+b,[l1])
network trained on current and historical information is shown to be able to “memory” models like Recurrent Neural Networks (RNNs), Time-Delay Neural

predict the next-day USDJPY open rate. Networks and Long Short-Term Memory (LSTMs) were all found to perform worse
during preliminary testing; probably due to inclusion of additional noise.

Deep Neural Network with inclusion of previous day close price was sufficient in

r? = ReLuWPh" + b

Despite being a complex and nonlinear problem, the set of determining
factors for USDJPY rate seems to be reasonably finite; this suggests
that a well-trained neural network could be effective in predicting price

7 = [2]
Mean Squared Error is used as loss function. Ye ReLu(Wyht +* by)

Hyperparameter tuning was conducted in 3 phases based on RMSE of dev set., starting first with 20>10>5 configuration with no

movements. regularization.
1: Number of terations 2: Size of NN & Reqularization 3: Fine-tune hidden layer 2 & Number of
#Epoch: {100,500,1000,2500,5000} \ n1 : {20,40,80} Iterations
n2:{10,20,40} #Epoch: {750,1000,1500,2000, 2250}
a n3:{5,10} n2:{10,20,30,40,50}
Data Processing ‘ dropout_1&2 : {0, 0.3,0.7}
Combinations: 5 Combinations: 162 Combinations: 20
Input variables including macroeconomic, financial, trade and monetary policies indicators
are used: ‘ Results
e Spot daily rates of other major currencies: EURUSD, GBPUSD, USDCNY, NZDUSD and USDCHF
o Consumer price inflation rates of US and Japan Model T Dev Test
o Close price of stock indices in US and Japan: S&P 500 Index and Nikkei 225 Test results of tuned model demonstrates low error rate. Test RMSE of 0.235 and RMSE | RMSE | RMSE
*  Yields of government bonds in US and Japan: US 13 Week Treasury Bill, US Treasury 10 Year Bond, test MAE of 0.222 signiﬁcantly outperforms devRMSE of other models. Simple linreg on 5511 17.10

US Treasury 30 Year Bond, Japanese Government 2 Year Bond, Japanese Government 10 Year Bond cr_pvariate_s only
Export and import price indices in US and Japan e ReLu[20]>ReLu[50]>ReLu[5] Linreg with 0671 | 0520
Cross-border trading volumes between US and Japan
o CBOE volatility index (VIX)

e No dropout regularization

o Epoch=2000 LSTM 0.084 2435
These variables dated from 1995-03-31 to 2017-09-11 were extracted manually from FRED, Quandl, e Loss: MSE NN pre tuning 0.469 0.688
‘Yahoo Finance, Bloomberg and Bureau of Labor Statistics and transformed into daily frequencies. e Adam Optimizer N
Observations on the first 5800 days, next 1200 days and last 1200 days of the above-mentioned period NN posttuning | 0237 | 0163 | 0235
were placed into the training, dev and test sets (70:15:15) respectively.
Autoregressive factor of 1 is chosen based on time-series analysis. Consistent with Weak Portfolio Simulation
Efficient Market Hypothesis ("Markov property”)
K =4 Investment Portfolios were generated using the test set based on 3 differing strategies:
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Figure 3: No leverage; No Forecast Margin Forecast Margin > Dev_MAE = 0.25

’ Figurs 4: No leverage; ‘ ‘ Figure 5: Fixed leverage at 10x;

Forecast Margin > Dev_MAE = 0.25
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