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Overview

Post-stroke lesion detection is a process that currently
takes skilled tracers up to an hour per scan [1].
Automating lesion detection will not only help radiologists
catch problematic lesions in many clinical domains but
will also enable us to rapidly expand neuroimaging
datasets, which can then be used to improve our
understanding of how MRI brain scans relate to recovery
prognoses and suitable treatments. In this work, we test
deep learning methodologies used in prior medical image
segmentation studies [2-4] on USC’s new (2018)
Anatomical Tracings of Lesions After Stroke (ATLAS)
dataset. Given a series of MRl slices of the brain as input,
our model predicts segmentation masks identifying the
locations of post-stroke lesions as output. We
demonstrate how a U-Net architecture, applying dilation,
or using Gaussian blurring are relatively ineffective for
improving the dice coefficient of our predictions while the
greatest performance can be derived by cascading an
encoding/decoding neural network architecture.

The ATLAS Dataset ——

Data. The publicly available ATLAS dataset [1] includes
229 T1-weighted MRI scans (from n=220 patients) with
segmented lesions. Each scan includes a series of
(grayscale) MRI slices and one or more series of lesion
masks. The original images are converted to Numpy
arrays of pixel intensity values, which are then normalized
to values between 0 and 1 to be input into the neural
network.

Examples of two pairs of MRI slices (1a,2a) with the corresponding
lesion mask overlaid in blue (1b,2b) from the ATLAS dataset.

Features. Each brain scan is a 232 x 196 image, so the
raw input data contains 45,472 features per image. We
chose not to introduce any additional features in this
project in order to assess the ability of our network to
detect lesions based only on the original MRI scans.

Using neural networks for post-stroke lesion detection in the ATLAS dataset

Diana D. Chin
ddchin@stanford.edu

Karen M. Wang

kmwang14@stanford.edu

Models

The Atlas Model
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The U-Net architecture, adapted from [2]. alole] KRR

We also reduced the network size in a “medium” 4
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The cascaded network architecture, shown here for a twice
cascaded system. We also tried dilating the output of the
1st network before masking, and blurring the masked
images input into the second network, as shown in the
following examples:
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Results

Our training and dev sets had 12984 and 1000 samples, respectively, and were
evaluated by their DICE* scores (training scores were calculated on 100 sample
subsets). Numbers in parentheses show the change from the baseline model after

training for the same number of epochs (per network for the cascaded models).

Model
U-Net, small (3 epochs)
U-Net, medium (3 epochs)

Training DICE
0.020 (-74%)
0.030 (-62%)
0.071 (-8.9%)
0.55 (+20%)

Dev DICE
0.017 (-79%)
0.024 (-70%)
0.028 (-65%)
0.42 (+21%)

U-Net, large (3 epochs)
Single Cascaded Atlas (20 epochs/network)

Single Cascaded w/ dilation (10 epochs/network) 0.39 (+56%) 0.34 (+35%)
Single Cascaded w/ blurring (10 epochs/network) 0.47 (+88%) 0.35 (+39%)
Double Cascaded w/ dilation (10 epochs/network) 0.44 (+76%) 0.36 (+42%)

Double Cascaded Atlas (20 epochs/network) 0.58 (+26%) 0.44 (+25%)
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Results & Discussion

Cascading the Atlas model successfully improved segmentation
performance, but with diminishing returns for each additional
cascade. Dilating was likely less helpful because the relative recall/ o4
precision weightings in the loss function of the first network favored
false positives, so the predicted mask was generally already larger %
than the target. Blurring may have been ineffective because it leads ©,,
to the loss of potentially useful information.
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U-Net, than expected as it appeared to

only be thresholding, but we
suspect that it would improve
after much more training.
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We also noted a tradeoff between
recall and precision produced by
adjusting the weighting in our
cross entropy loss function.
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A saliency map illustrates the gradient of the predicted mask
probabilities with respect to the input image pixels, where a high
gradient, bright pixel indicate the importance of that input pixel in
d ining the output pr ilities. The most salient pixels
seem to cluster around gray and high contrast areas.

Future Work

The difference between the training and dev set performances indicate that the
model has high variance, so a promising next step would be to use more training
data to resolve this discrepancy. Additional regularization and further tuning the
hyperparameters would also likely help. To improve the training and dev
performance further, we would recommend training a larger model, exploring
volumetric segmentation models from sparsely labeled images, or incorporating
lesion metadata (ex. primary stroke location and hemisphere or vascular territory).
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