

Predicting Seismic-induced Building Damage using Mixture Deep Learning Features

Zhaozhuo Xu Zhiyuan Li Haiwen Wang {zhaozhuo, zhiyuan8, hwwang} @stanford.edu

CS 230 Deep Learning

Motivation

Earthquake building damage prediction models can provide necessary information for urban planer and insurance decision-makers. In this project:

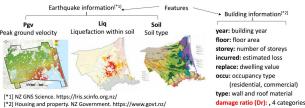
- 1) Trained a CNN to obtain geotechnical feature vectors.
- 2) Consturcted mixture features via combining geotechnical vectors with building information matrix.
- 3) Used ANN and softmax to predict damage degree.
- 4) Outperform currently statistical methods and National technical specification.

Dataset Description

VGG CIFAR-2 Network

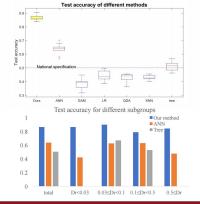
Max Pooling

Softmax



Results

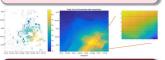
(1) After 10 trials the combined CNN model could achieve 86.5% mean testing accuracy, while ANN model without information from CNN reaches 65.2% mean testing accuracy. Compared to other statistical methods and national specification method, our model outperforms greatly. (2) Our model possesses 86.5%, 90.0%, 78.9%, 84.3% accuracy for damage ratio group 0-0.03, 0.3-0.1, 0.1-0.5, 0.5-\omega, respectively. It has stably excellent performance for each subgroup in contrast with others.



Approaches

Constructing CNN inputs The earthquake information (pgv/liq/soil) is from observation recordings (see figure at left).

- Using KNN, datasets are interpolated as 5000×5000 huge picture (see figure in middle)
 Earthquake information around buildings is saved as 32×32 tiles. (see figure below)



Mixture DL Feature

- Refine a VGG CIFAR-2 network for two class
- Construct 2 class categorical damage state label

 Train VGG network Obtain the FC layer as features extracted from input tiles. 							Damage Ratio
Model Parameter							
CNN (vgg network)	Epoch	100	ANN	Input	10 + 2	Learning rate	0.01
	Batch-size	128		n ^[1]	10	Batch-size	64
	Learning rate	0.02		n ^[2]	5	Epoch	1000
	Output	softmax		Optimizer	Adam	Activation	sigmoid

Train and Test Set Construction

- · Each data point contains: pgv, liq, soil, year, floor, story incurred, replace, occu, type
- Label for each data point: damage ratio Randomly shuffle 6788 data points
- Split into training set(6000 points) and test set(788 points)

Labels and Loss Function

- Damage Ratio (Dr) = $\frac{\text{Repair (repair cost)}}{\text{Replace (dwelling value)}}$
- · Damage degree:
- Middle: 0.03 < Dr < 0.1 Extra Large: Dr > 0.5
- Small: Dr < 0.03, Middle: 0.0

 Large: 0.1 < Dr < 0. Extra

 Loss function: softmax cross entropy
 - Minimize $\sum_{i=1}^{\# classes} y_i \log(\hat{y}_i)$
- Feature extractor (VGG) training: # classes = Damage State labeled as: 0,1
- Analytical neural network training: # classes = Damage degree labeled as: 0,1,2,3
- Evaluation metric: categorical predicting accuracy

[1] BA Bradley, Ground motions observed in the Darfield and Christchurch earthquakes and the importance of local site response effects[J]. New Zealand Journal of Geology & Geophysics, 2012, 55(3):279-286.

[2] Lautour O R D. Omenzetter P. Prediction of seismic-induced structural damage using artificial neural networks[J]. Engineering Structures, 2009, 31(2):600-606.

By combining the training of CNN and ANN models, we manage to find sets of DL features that are able to yield an excellent damage ratio estimation. To

- We develop a ANN that outperform other state-of-art statistical methods.
- This is also the first CNN model applied to the specific area. Features extracted by CNN can help improve the performance of ANN
- when combining building information.

 The most important three features are 'replace (dwelling value)'. 'floor (floor area)', 'occu (occupancy type)'. (figures are omitted)

- Tuning a better CNN model.
 - Use this feature in other damage ratio based tasks.