Abstract

President Donald Trump's Twitter account has been noted for its
distinctive writing style. Ve attempt to build a recurrent neural
network that trains on 2,829 @realDonaldTrump tweets in order to
generate new tweets in the style of the president. A neural network
that trains on words rather than characters and consists of 4
bidirectional LSTM layers generates tweets that closely resemble
@realDonaldTrump's tweets. The addition more layers or dropout
regularization has some minimal impact on the quality of the output.

* * * % K

Make Al Great Again

* * k kK
Generating Tweets in 'Presidential’ Style Using Recurrent Neural Networks

Results — Model Performance

Model Description Loss Sample output
Character: Base 1-layer LSTM with 1.8479 (after uic oi the resuic oi the resuic oi the
model dropout, learning rate 96 epochs) resuic oi the resuic oi the resuic oi

=0.001

the resuic oi the resui

Character: Base
+ Faster learning

1-layer LSTM with
dropout, learning rate
=0.01

2.0593 (after
19 epochs)

people of the fake news the searet
wery searri the people of the fake
news the searet wery searri t

Character: Two-
layer

2-layer LSTM with
dropout, learning rate
=0.001

1.5376 (after
50 epochs)

and the fake news media is a great
honor to welcome the united states
and the people of the world fo

Character: Base

Data & Features

The dataset consists of 2,829 tweets issued by the
@realDonaldTrump Twitter account between March 4,2017 and May
31,2018. Retweets are excluded. Replies by @realDonaldTrump are
included. Tweets were extracted using the TwDocs tool. Some pre-
processing was required: President Trump uses a significant number of
ampersands that were extracted as "\&" and therefore were
manually replaced with the proper character. Pre-processing and
normalization required for training varied by model.

Models

The Character Based Model uses a tokenizer that converts each
character into an integer and is then normalized. Next, the base
model applies one LSTM layer containing 256 LSTM units, applies
dropout regularization, and applies a softmax activation layer. Adam
optimizer is used, with learning rate of 0.001, betal of 0.9, and beta2
of 0.999.

The Word Based Model uses a tokenizer to turn each word into an
integer corresponding to a token in a dictionary. Next, the model
feeds embeddings into two sequential LSTM layers that contains 128
LSTM units each.The embedding and outputs of both LSTM layers are
concatenated and fed into an attention layer that calculates the
weighted average of inputs over time and outputs a context vector.
Last, a dense layer applies a softmax activation. RMSprop is used with
with learning rate of 0.004.

I-layer bidirectional

1.9569 (after

the sireate niane on the uarl and seau-

+ bidi LSTM with dropout, 36 epochs) rity 00 the sases and secori big teey
learning rate = 0.001 io the uasling onft to
Character: Two- 2-layer bidirectional ~ 1.3889 (after the fake news media is a great state
layer + bidirec- LSTM, learning rate = 26 epochs) of the fake news media is a disaster
tional 0.001
‘Word: Base 4-layer, 128-cell 1.9735 (after A thateres’, my of ranto the w/ Yomil
model (on Bidirectional LSTMs, 10 epochs) resut dime the we the secuse, GRIO
characters) learning rate = 0.004
Word: Base 4-layer, 128-cell 0.2435 (after ~ general john kelly is doing a great
model Bidirectional LSTMs, 100 epochs) job as chief of staff . all americans
learning rate = 0.004 strong on mexico on this our country
vote for against the next administra-
tion . if no support !
Word: Base 4-layer, 128-cell 0.2577 (after steve bannon will be interviewed
model +dropout Bidirectional LSTMs, 100 epochs) by @ seanhannity at 9pme on @
learning rate = 0.004, foxnews
dropout = 0.2
‘Word: Base 8-layer, 128-cell 0.2875 (after michael wolff is a total loser who
model +dropout Bidirectional LSTMs, 150 epochs) made up stories in order to sell this
+ 8 layer learning rate = 0.004, would go up classified information !

dropout = 0.2

spending !

Results - Loss under varying architectures and parameters for
model with multiple LSTM layers

15.0
12.5
10.0

2

S 75 -

5.0 -
i
0.0

0 10 20 30 40 50 6€p0'7c% (%S) 90 100 110 120 130 140

—4 Layer Word
—4 Layer Word + Dropout —8 Layer Word + Dropout

-4 Layer Character

CS230

Naveen Srivatsa
nns@stanford.edu
Stephanie Scott
smscott@stanford.edu

Discussion

Character vs Word Model — A multi-layer character
model can reproduce words and phrases that resemble
President Trump’s tweets (e.g., “fake news”). Character-
based model is prone to spelling errors but captures
capitalization.Word-based models are superior, as they can
produce coherent sentences or tweets.

Learning Rate — Increasing the learning rate resulted in no
meaningful decrease in the runtime of each epoch.

Dropout — Adding dropout to the 4-layer model improved
performance and loss convergence slightly.

Bidirectional layers — Replacement of the feedforward
layers with bidirectional layers in the two-layer character-
based models reduces the number of epochs required to
achieve low levels of loss but increases the length of each
epoch.

Exploding gradients — Character-based models with
faster learning or bidirectional layers see evidence exploding
gradient. Future versions of model should incorporate
gradient norm clipping.

Overfitting — Some output tweets closely resemble input
data (e.g.,,“Michael Wolff is a total loser who made up
stories in order to sell”). Future versions of model should
reduce levels of overfitting.

Future

We find that a neural network that trains on words rather
than characters and consists of 4 bidirectional LSTM layers
generates tweets that closely resemble
@realDonaldTrump’s tweets. Future iterations of this
model should begin with the word-based model and focus
on reducing levels of overfitting.

References:

quswal.?.(lOl7).Keras Recurrent Neural Network with Python. GitHub repository,

Pascanu, R, Mikolow,T. & Bengio, Y. :10I 3, rebmary).lt; the d:(ff-vculltyog(training recurrent neural networks. In

International Conference on Machine Learning (pp. 1310-1318).
Woolf, M. (2017).Textgenrnn. GitHub repository, https/github.com/minimaxir/textgenrnn

