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Face	recognition

What	is	face	
recognition?
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Face recognition

[Courtesy of Baidu]
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Face verification vs. face recognition

Verification
• Input image, name/ID
• Output whether the input image is that of the 

claimed person

Recognition
• Has a database of K persons
• Get an input image
• Output ID if the image is any of the K persons (or 

“not recognized”)
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Face	recognition

One-shot	learning
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One-shot learning
Learning from one 
example to recognize the 
person again
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Learning a “similarity” function
d(img1,img2)	= degree of difference between images

If d(img1,img2)		≤ 	-	
> 	-	
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Face	recognition

Siamese	network
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Siamese network

[Taigman et. al., 2014. DeepFace closing the gap to human level performance]
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Goal of learning

⋮

f("($))

⋮

Parameters of NN define an encoding ((" ) )
Learn parameters so that: 

If " ) , " + are the same person, f " ) − f " + &
is	small.	

If " ) , " + are different persons, f " ) − f " + &
is	large.	
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Face	recognition

Triplet	loss
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Learning Objective

[Schroff et al.,2015, FaceNet: A unified embedding for face recognition and clustering]

Anchor Positive Anchor Negative
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Loss function

Training set: 10k pictures of 1k persons

[Schroff et al.,2015, FaceNet: A unified embedding for face recognition and clustering]
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Choosing the triplets A,P,N

During training, if A,P,N are chosen randomly, 
! ", $ + & ≤ !(", )) is easily satisfied.

Choose triplets that’re “hard” to train on.

[Schroff et al.,2015, FaceNet: A unified embedding for face recognition and clustering]
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Training set using triplet loss
Anchor Positive Negative

⋮ ⋮ ⋮



deeplearning.ai

Face	recognition

Face	verification	and	
binary	classification



Andrew	Ng

Learning the similarity function
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[Taigman et. al., 2014. DeepFace closing the gap to human level performance]
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Face verification supervised learning
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[Taigman et. al., 2014. DeepFace closing the gap to human level performance]



deeplearning.ai
What	is	neural	style	

transfer?
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Transfer
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Neural style transfer

[Images generated by Justin Johnson]

Content Style Style Content 

Generated image Generated image 
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What	are	deep

ConvNets learning?

Neural	Style	
Transfer
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Visualizing what a deep network is learning

224×224×3

⋮ ⋮ &'

110×110×96
55×55×96

26×26×256 13×13×256 13×13×384 13×13×384 6×6×256
FC 
4096

FC 
4096

Pick a unit in layer 1. Find the nine 
image patches that maximize the unit’s 
activation. 

Repeat for other units.

[Zeiler and Fergus., 2013, Visualizing and understanding convolutional networks]
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Visualizing deep layers

Layer 2 Layer 4Layer 3 Layer 5Layer 1
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Visualizing deep layers: Layer 1

Layer 2 Layer 4Layer 3 Layer 5Layer 1
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Visualizing deep layers: Layer 2

Layer 2 Layer 4Layer 3 Layer 5Layer 1
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Visualizing deep layers: Layer 3

Layer 2 Layer 4Layer 3 Layer 5Layer 1



Andrew	Ng

Visualizing deep layers: Layer 3

Layer 2 Layer 4Layer 3 Layer 5Layer 1
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Visualizing deep layers: Layer 4

Layer 2 Layer 4Layer 3 Layer 5Layer 1
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Visualizing deep layers: Layer 5

Layer 2 Layer 4Layer 3 Layer 5Layer 1
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Transfer
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Neural style transfer cost function

Content C Style S

Generated image G

[Gatys et al., 2015. A neural algorithm of artistic style. Images on slide generated by Justin Johnson]
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Find the generated image G

1. Initiate G randomly
G: 100×100×3

2. Use gradient descent to minimize %(')

[Gatys et al., 2015. A neural algorithm of artistic style]
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Content cost function

• Say you use hidden layer ! to compute content cost. 

" # = %	"'()*+)* ,, # + /	"0*12+	(4, #)

• Use pre-trained ConvNet. (E.g., VGG network)

• Let 6[2](9) and 6[2](:) be the activation of layer !
on the images   

• If 6[2](9) and 6[2](:) are similar, both images have 
similar content

[Gatys et al., 2015. A neural algorithm of artistic style]
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Transfer
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Meaning of the “style” of an image

⋮ "#
255 134 93 22
123 94 83 2
34 44 187 30
34 76 232 124
67 83 194 142

255 134 202 22
123 94 83 4
34 44 187 192
34 76 232 34
67 83 194 94

255 231 42 22
123 94 83 2
34 44 187 92
34 76 232 124
67 83 194 202

Say you are using layer $’s activation to measure “style.”
Define style as correlation between activations across channels. 

How correlated are the activations 
across different channels?

%&
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[Gatys et al., 2015. A neural algorithm of artistic style]



Andrew	Ng

Intuition about style of an image

Style image Generated Image
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[Gatys et al., 2015. A neural algorithm of artistic style]
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Style matrix

Let	a*,,,-
[/] = activation	at	 2, 3, 4 . 	7[/] is	n9

[/]×n9
[/]

[Gatys et al., 2015. A neural algorithm of artistic style]
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Style cost function
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[Gatys et al., 2015. A neural algorithm of artistic style]
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Convolutional	
Networks	in	1D	or	3D

1D	and	3D	
generalizations	of	

models
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Convolutions in 2D and 1D

14×14
2D input image

∗
2D filter

5×5

∗

1 3 10 3 11 20 15 3 18 12 4 17
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3D convolution

∗

3D volume

3D filter


