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Classic networks:

• LeNet-5

ResNet

Inception

• AlexNet

• VGG
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LeNet - 5
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[LeCun et al., 1998. Gradient-based learning applied to document recognition]
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AlexNet
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[Krizhevsky et al., 2012. ImageNet classification with deep convolutional neural networks]
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VGG - 16
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[Simonyan & Zisserman 2015. Very deep convolutional networks for large-scale image recognition]
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Residual block
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[He et al., 2015. Deep residual networks for image recognition]
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Residual Network
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[He et al., 2015. Deep residual networks for image recognition]
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Why do residual networks work?
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ResNet
Plain

ResNet

[He et al., 2015. Deep residual networks for image recognition]
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Why does a 1 × 1 convolution do?
1 2 3 6 5 8
3 5 5 1 3 4
2 1 3 4 9 3
4 7 8 5 7 9
1 5 3 7 4 8
5 4 9 8 3 5

2∗ =

∗ =

6	× 6

6	× 6 × 32 1	× 1 × 32 6	× 6 × #	filters
[Lin et al., 2013. Network in network]
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Using 1×1 convolutions

28	× 28	× 192
28	× 28	× 32

ReLU

CONV 1 × 1
32

[Lin et al., 2013. Network in network]
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Motivation for inception network

28 × 28 × 192
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3 × 3 
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[Szegedy et al. 2014. Going deeper with convolutions]
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The problem of computational cost 

28 × 28 × 192

CONV
5 × 5, 
same,

32 28 × 28 × 32
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Using 1×1 convolution

28 × 28 × 192

CONV
1 × 1, 

16,
1 × 1 × 192 28 × 28 × 16

CONV
5 × 5, 

32,
5 × 5 × 16 28 × 28 × 32
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Inception module
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Inception network

[Szegedy et al., 2014, Going Deeper with Convolutions]
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Motivation for MobileNets

• Low computational cost at deployment

• Useful for mobile and embedded vision 
applications

• Key idea: Normal vs. depthwise-
separable convolutions

[Howard et al. 2017, MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications]
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Normal Convolution

Computational cost         =           #filter params    x       # filter positions        x          # of filters

6 x 6 x 3

*

3 x 3 x 3

=

4 x 44 x 4 x 5
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Depthwise Separable Convolution

* =

Normal Convolution

* =*

Depthwise Separable Convolution

Depthwise Pointwise
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Computational cost          =           #filter params      x       # filter positions        x          # of filters

6 x 6 x 3

*

3 x 3 

=

4 x 4 x 3

Depthwise Convolution
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Depthwise Separable Convolution

* =

Depthwise Convolution

Pointwise Convolution

* =
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Pointwise Convolution

Computational cost      =           #filter params      x       # filter positions        x          # of filters

* =

4 x 4 x 3

1 x 1 x 3 

4 x 4 x 54 x 4
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Depthwise Separable Convolution

* =

Normal Convolution

* =*

Depthwise Separable Convolution

Depthwise Pointwise
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Cost Summary

[Howard et al. 2017, MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications]

Cost of depthwise separable convolution

Cost of normal convolution
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Depthwise Separable Convolution
Depthwise Convolution

* =

Pointwise Convolution

* =
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Architecture

Convolutional
Neural Networks



MobileNet

Andrew Ng[Sandler et al. 2019, MobileNetV2: Inverted Residuals and Linear Bottlenecks]

MobileNet v1

MobileNet v2

Depthwise ProjectionExpansion

Residual Connection
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MobileNet v2 Bottleneck

[Sandler et al. 2019, MobileNetV2: Inverted Residuals and Linear Bottlenecks]

Residual Connection

Expansion Depthwise Pointwise
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Andrew Ng[Sandler et al. 2019, MobileNetV2: Inverted Residuals and Linear Bottlenecks]

MobileNet v1

MobileNet v2

Depthwise ProjectionExpansion

Residual Connection
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MobileNet v2 Full Architecture

[Sandler et al. 2019, MobileNetV2: Inverted Residuals and Linear Bottlenecks]

conv2d
conv2d

1 x 1

avgpool
7 x 7

conv2d
1 x 1
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Convolutional
Neural Networks



Andrew Ng[Tan and Le, 2019, EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks]
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Common augmentation method
Mirroring

Random Cropping Rotation

Shearing

Local warping

…
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Color shifting

+20,-20,+20

-20,+20,+20

+5,0,+50
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Implementing distortions during training
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The	state	of	
computer	vision
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Data vs. hand-engineering

Two sources of knowledge
• Labeled data
• Hand engineered features/network architecture/other components
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Tips for doing well on benchmarks/winning 
competitions

Ensembling
• Train several networks independently and average their outputs

Multi-crop at test time
• Run classifier on multiple versions of test images and average results
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Use open source code

• Use architectures of networks published in the literature

• Use pretrained models and fine-tune on your dataset

• Use open source implementations if possible


