Copyright Notice

These slides are distributed under the Creative Commons License.

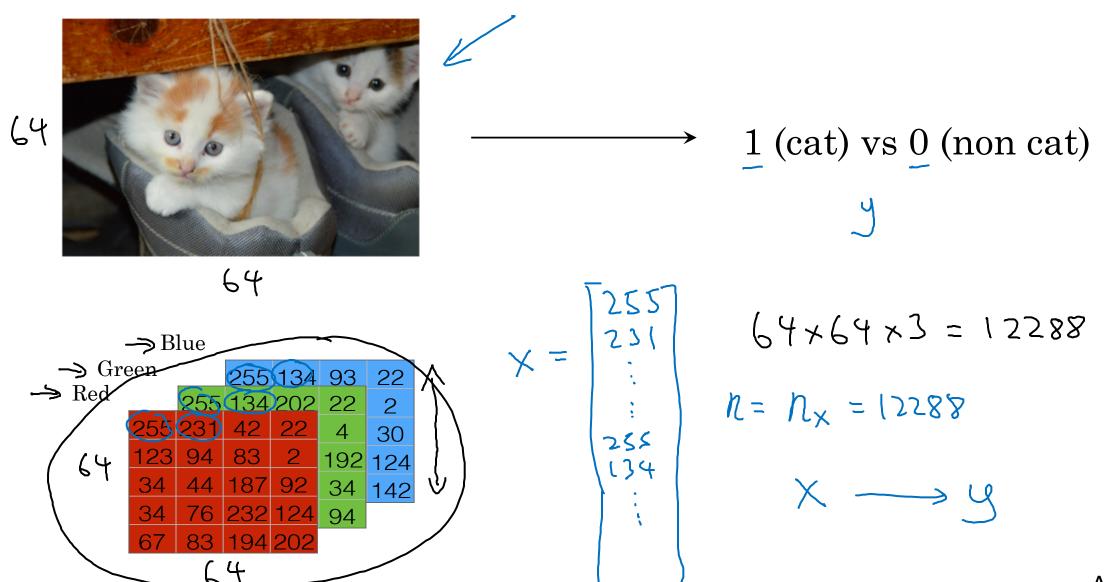
<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Basics of Neural Network Programming

Binary Classification

Binary Classification



Andrew Ng

Notation

$$(x,y)$$
 $\times \in \mathbb{R}^{n_x}$, $y \in \{0,1\}$
 $m \leftarrow \text{trainiy}$ examples: $\{(x^{(i)},y^{(i)}),(x^{(i)},y^{(2i)}),...,(x^{(m)},y^{(m)})\}$
 $M = M \leftarrow \text{train}$ $M \leftarrow \text{test} = \text{thest}$ examples.
 $X = \begin{bmatrix} x^{(i)} & x^{(2i)} & \dots & x^{(m)} \end{bmatrix}$
 $X = \begin{bmatrix} x^{(i)} & x^{(2i)} & \dots & x^{(m)} \end{bmatrix}$
 $X \in \mathbb{R}^{n_x \times m}$ $X \in \mathbb{R}^{n_x \times m}$
 $X \in \mathbb{R}^{n_x \times m}$ $X \in \mathbb{R}^{n_x \times m}$

Basics of Neural Network Programming

Logistic Regression

Logistic Regression

Given
$$x$$
, want $y = P(y=1|x)$
 $x \in \mathbb{R}^{n}x$
Parareters: $w \in \mathbb{R}^{n}x$, $b \in \mathbb{R}$.
Output $y = \sigma(w^{T}x + b)$
Output $y = \sigma(x)$

$$X_0 = 1, \quad x \in \mathbb{R}^{n_x + 1}$$

$$\hat{y} = 6 (0^{T}x)$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

Basics of Neural Network Programming

Logistic Regression cost function

Logistic Regression cost function

Given
$$\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$$
, want $\hat{y}^{(i)} \approx y^{(i)}$.

Since $\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$, want $\hat{y}^{(i)} \approx y^{(i)}$.

Loss (error) function: $\int_{\mathcal{C}} (\hat{y}, y) = \frac{1}{2} (\hat{y} - y)^2$

The entropy of the second of the

Basics of Neural Network Programming

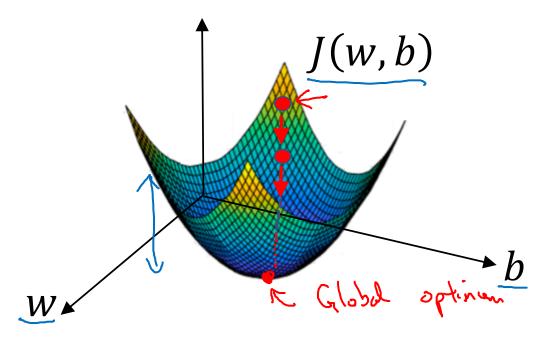
Gradient Descent

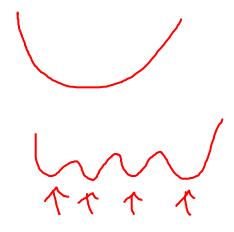
Gradient Descent

Recap:
$$\hat{y} = \sigma(w^T x + b)$$
, $\sigma(z) = \frac{1}{1 + e^{-z}}$

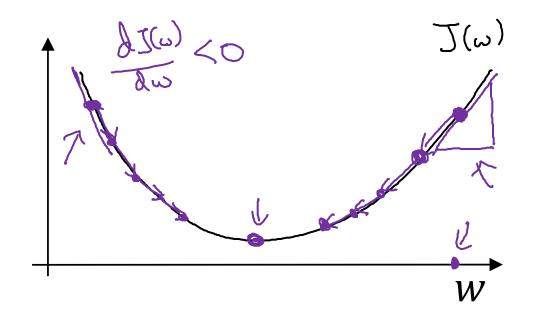
$$\underline{J(w,b)} = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

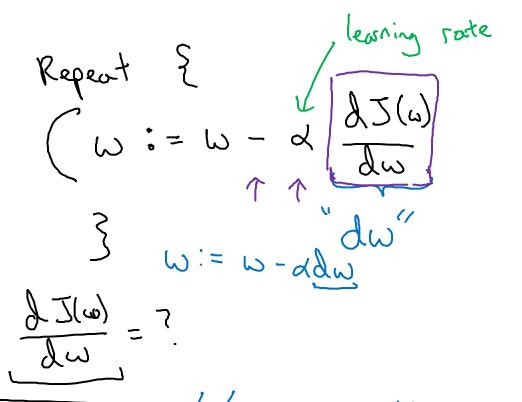
Want to find w, b that minimize I(w, b)





Gradient Descent





$$J(\omega,b)$$

$$b:=b-\lambda \frac{\partial J(\omega,b)}{\partial \omega}$$

$$\frac{\partial J(\omega,b)}{\partial \omega}$$

$$\frac{\partial J(\omega,b)}{\partial \omega}$$

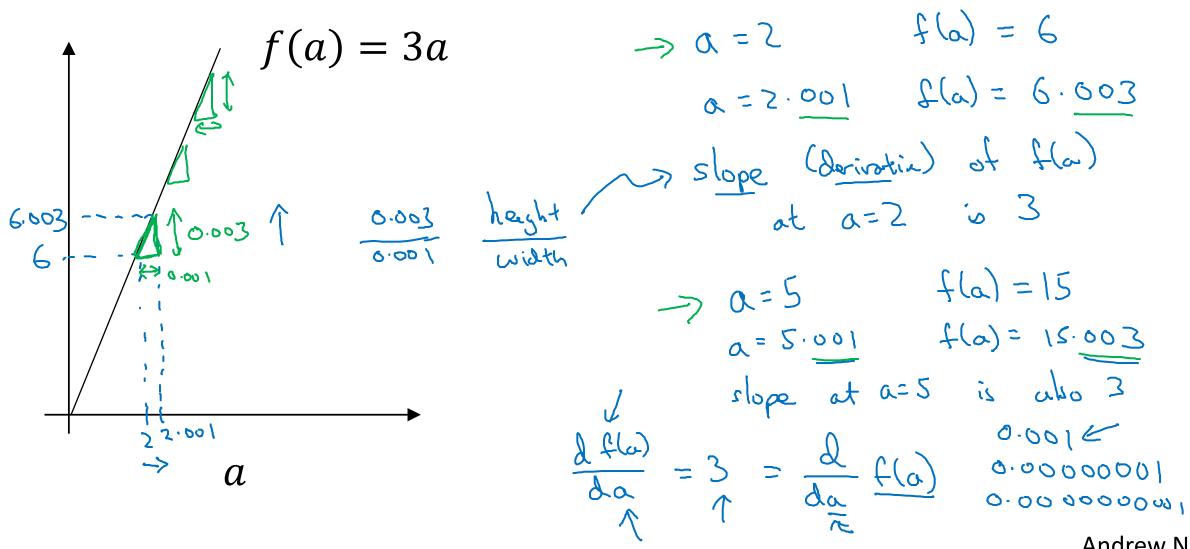
$$\frac{\partial J(\omega,b)}{\partial \omega}$$

Andrew Ng

Basics of Neural Network Programming

Derivatives

Intuition about derivatives

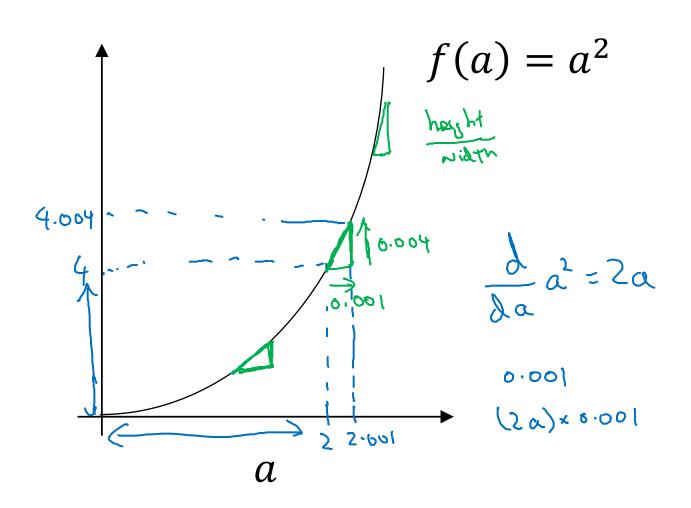


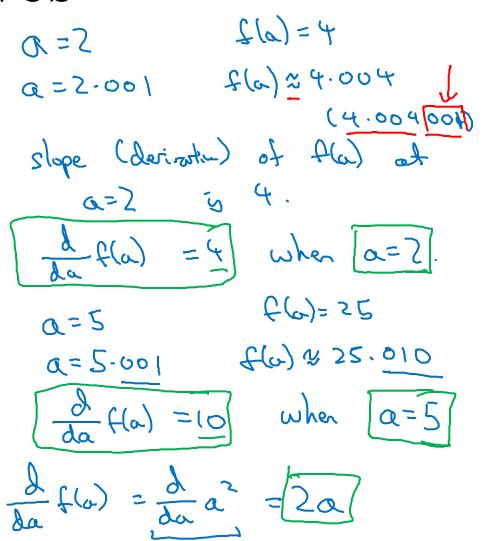
Andrew Ng

Basics of Neural Network Programming

More derivatives examples

Intuition about derivatives





More derivative examples

$$f(a) = a^2$$

$$f(\omega) = \alpha^3$$

$$\frac{d}{da}(a) = 3a^{2}$$
 $3x2^{3} = 12$

$$a = 2$$
 $f(a) = 4$
 $a = 2-001$ $f(a) = 4-004$

$$a = 5.001$$
 $f(a) = 8$
 $a = 5.001$ $f(a) = 8$

$$0.0002 < 0.0002$$

$$0.0002 < 0.0002$$

$$0.0002 < 0.0002$$

Basics of Neural Network Programming

Computation Graph

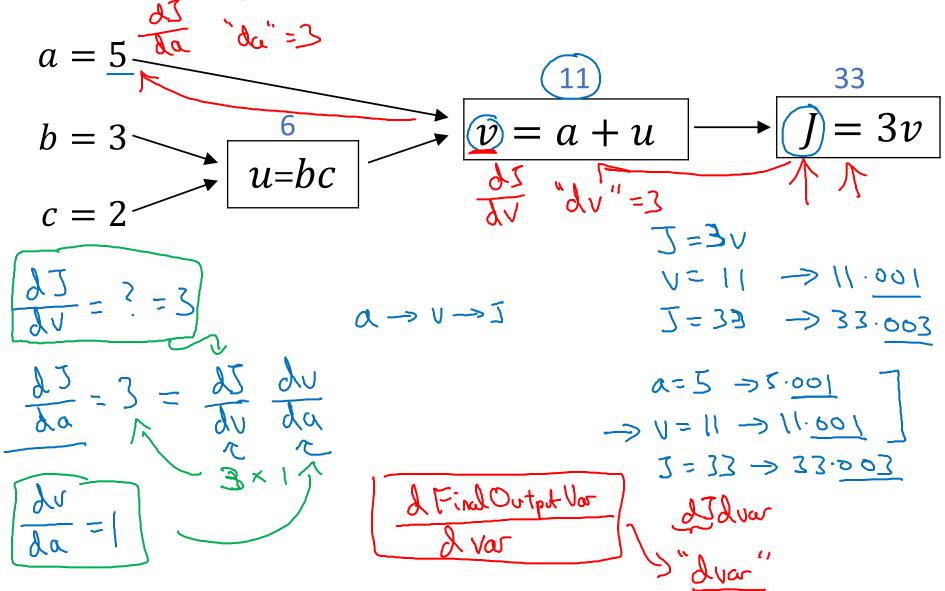
Computation Graph

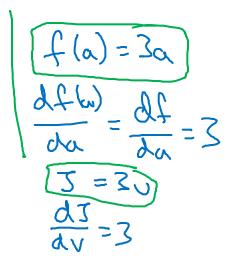
$$J(a,b,c) = 3(a+bc) = 3(5+3*2) = 33$$
 $U = bc$
 $V = a+u$
 $J = 3v$
 $U = bc$
 $U = bc$
 $U = bc$
 $U = a+u$
 $U = bc$
 $U = a+u$
 $U = bc$
 $U = a+u$
 $U = a+u$

Basics of Neural Network Programming

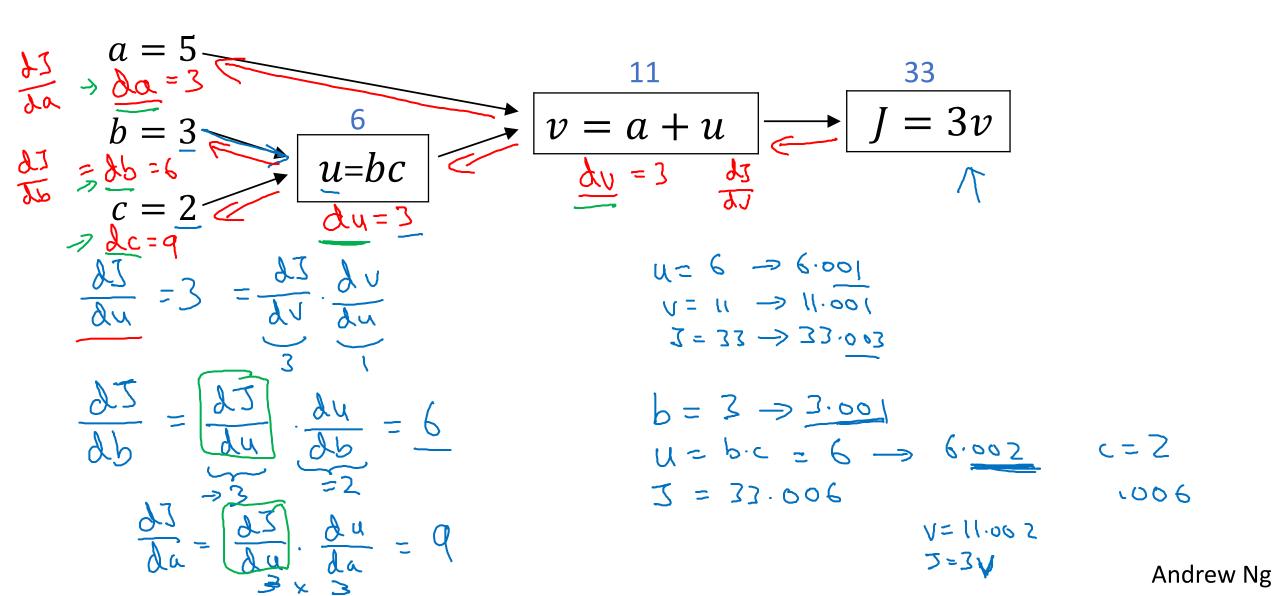
Derivatives with a Computation Graph

Computing derivatives





Computing derivatives



Basics of Neural Network Programming

Logistic Regression Gradient descent

Logistic regression recap

$$\Rightarrow z = w^{T}x + b$$

$$\Rightarrow \hat{y} = a = \sigma(z)$$

$$\Rightarrow \mathcal{L}(a, y) = -(y \log(a) + (1 - y) \log(1 - a))$$

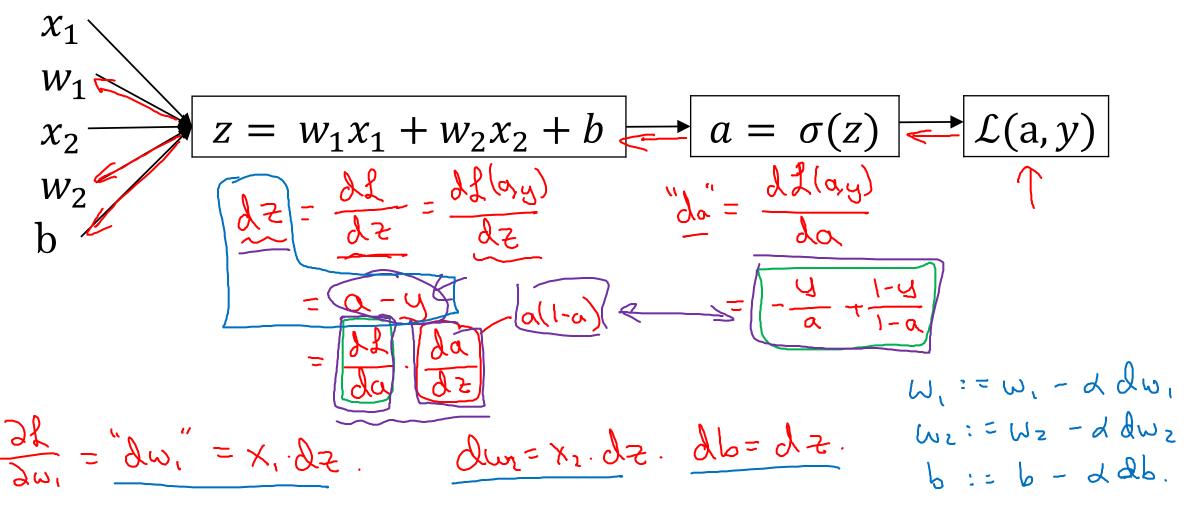
$$\begin{cases} \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \end{cases}$$

$$\begin{cases} \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \end{cases}$$

$$\begin{cases} \lambda_{2} \\ \lambda_{3} \end{cases}$$

$$\begin{cases} \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \end{cases}$$

Logistic regression derivatives



Basics of Neural Network Programming

Gradient descent on m examples

Logistic regression on m examples

$$\frac{J(u,b)}{J(u,b)} = \frac{1}{m} \sum_{i=1}^{m} f(a^{(i)}, y^{(i)}) \\
\Rightarrow a^{(i)} = f(x^{(i)}) = G(x^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial u_i} J(u,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial u_i} f(a^{(i)}, y^{(i)}) \\
\frac{\partial u_i}{\partial u_i} - (x^{(i)}, y^{(i)})$$

Logistic regression on m examples

$$J=0; dw_{1}=0; dw_{2}=0; db=0$$

$$Z^{(i)} = \omega^{T} x^{(i)} + b$$

$$Q^{(i)} = G(Z^{(i)})$$

$$J+=-[y^{(i)}(\log Q^{(i)} + (1-y^{(i)})\log(1-Q^{(i)})]$$

$$dZ^{(i)} = Q^{(i)} - y^{(i)}$$

$$dW_{1} + = X^{(i)} dZ^{(i)}$$

$$dw_{2} + = X^{(i)} dZ^{(i)}$$

$$dw_{2} + = X^{(i)} dZ^{(i)}$$

$$J = 0; dw_{2} + Q^{(i)}$$

$$dZ^{(i)} = Q^{(i)} - Q^{(i)}$$

$$dW_{2} + Z^{(i)} dZ^{(i)}$$

$$dW_{2} + Z^{(i)} dZ^{(i)}$$

$$dW_{3} + Z^{(i)} dZ^{(i)}$$

$$dW_{4} + Z^{(i)} dZ^{(i)}$$

$$dW_{5} + Z^{(i)} dZ^{(i)}$$

$$dW_{7} + Z^{(i)} dZ^{$$

$$d\omega_1 = \frac{\partial J}{\partial \omega_1}$$
 $\omega_1 := \omega_1 - d d\omega_1$
 $\omega_2 := \omega_2 - \alpha d\omega_2$
 $b := b - d db$

Vectorization

Basics of Neural Network Programming

Vectorization

What is vectorization?

for i in ray
$$(n-x)$$
:
 $2+=\omega [1] + x[1]$

Basics of Neural Network Programming

More vectorization examples

Neural network programming guideline

Whenever possible, avoid explicit for-loops.

$$U = AV$$

$$U_{i} = \sum_{i} \sum_{j} A_{ij} V_{j}$$

$$U = np.zeros((n, i))$$

$$for i \dots \subseteq ACIJCIJ * vC_{i}J$$

$$uCiJ += ACIJCIJ * vC_{i}J$$

Vectors and matrix valued functions

Say you need to apply the exponential operation on every element of a matrix/vector.

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \rightarrow \mathbf{u} = \begin{bmatrix} \mathbf{e}^{\mathbf{v}_1} \\ \mathbf{e}^{\mathbf{v}_2} \end{bmatrix}$$

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \rightarrow u = \begin{bmatrix} e^{v_1} \\ e^{v_n} \end{bmatrix}$$

$$u = \text{np. exp}(v) \leftarrow$$

$$\text{np. log}(v)$$

$$\text{np. abs}(v)$$

$$\text{np. havinum}(v, o)$$

Logistic regression derivatives

$$J = 0, \quad dw1 = 0, \quad dw2 = 0, \quad db = 0$$

$$\Rightarrow \text{ for } i = 1 \text{ to } n:$$

$$z^{(i)} = w^{T}x^{(i)} + b$$

$$a^{(i)} = \sigma(z^{(i)})$$

$$J + = -[y^{(i)}\log\hat{y}^{(i)} + (1 - y^{(i)})\log(1 - \hat{y}^{(i)})]$$

$$dz^{(i)} = a^{(i)}(1 - a^{(i)})$$

$$dw_{1} + x_{1}^{(i)}dz^{(i)}$$

$$dw_{2} + x_{2}^{(i)}dz^{(i)}$$

$$db + dz^{(i)}$$

$$J = J/m, \quad dw_{1} = dw_{1}/m, \quad dw_{2} = dw_{2}/m, \quad db = db/m$$

$$d\omega / = m$$

Basics of Neural Network Programming

Vectorizing Logistic Regression

Vectorizing Logistic Regression

$$Z^{(1)} = w^{T}x^{(1)} + b$$

$$Z^{(2)} = w^{T}x^{(2)} + b$$

$$Z^{(3)} = w^{T}x^{(3)} + b$$

$$Z^{(3)} = \sigma(z^{(3)})$$

$$Z^$$

Basics of Neural Network Programming

Vectorizing Logistic Regression's Gradient Computation

Vectorizing Logistic Regression

$$\frac{dz^{(1)} = a^{(1)} - y^{(1)}}{dz^{(2)}} = a^{(2)} - y^{(2)}$$

$$\frac{dz^{(1)} = a^{(1)} - y^{(1)}}{dz^{(2)}} = a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - a^{(1)}] \quad Y = [y^{(1)} - y^{(2)}]$$

$$A = [a^{(1)} - a^{(1)}] \quad Y = [y^{(1)} - y^{(2)}]$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(1)} - y^{(1)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(1)} - y^{(1)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a$$

$$db = \frac{1}{m} \sum_{i=1}^{n} dz^{(i)}$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(n)} dz^{(m)} \right]$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(n)} dz^{(m)} \right]$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(n)} dz^{(m)} \right]$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(n)} dz^{(m)} \right]$$

Implementing Logistic Regression

J = 0,
$$dw_1 = 0$$
, $dw_2 = 0$, $db = 0$

for i = 1 to m:

$$z^{(i)} = w^T x^{(i)} + b$$

$$a^{(i)} = \sigma(z^{(i)})$$

$$J += -[y^{(i)} \log a^{(i)} + (1 - y^{(i)}) \log(1 - a^{(i)})]$$

$$dz^{(i)} = a^{(i)} - y^{(i)}$$

$$dw_1 += x_1^{(i)} dz^{(i)}$$

$$dw_2 += x_2^{(i)} dz^{(i)}$$

$$dw_2 += dz^{(i)}$$

$$dw_1 += dz^{(i)}$$

$$dw_2 += dz^{(i)}$$

$$dw_1 += dz^{(i)}$$

$$dw_2 += dz^{(i)}$$

$$dw_2 += dz^{(i)}$$

$$dw_3 += dz^{(i)}$$

$$dw_4 += dz^{(i)}$$

$$dw_5 += dz^{(i)}$$

$$dw_6 += dz^{(i)}$$

$$dw_6 += dz^{(i)}$$

$$dw_6 += dz^{(i)}$$

iter in range (1000):
$$C$$

$$Z = \omega^{T} X + b$$

$$= n p \cdot dot (\omega \cdot T \cdot X) + b$$

$$A = c (Z)$$

$$dZ = A - Y$$

$$dw = m \times dZ^{T}$$

$$db = m n p \cdot sun(dZ)$$

$$\omega := \omega - x d\omega$$

$$b := b - x d\omega$$

Basics of Neural Network Programming

Broadcasting in Python

Broadcasting example

Calories from Carbs, Proteins, Fats in 100g of different foods:

Apples Beef Eggs Potatoes

Carb
$$56.0$$
 0.0 4.4 68.0

Protein 1.2 104.0 52.0 8.0

Fat 1.8 135.0 99.0 0.9 (3,4)

Squal 56.0 99.0 0.9 (3,4)

Columbs of Glors from Carb, Poten, Fort. Can you do the arphint for-loop?

Cal = A.sum(axis = 0)

percentage = $100*A/(cal Abstrace(1.6))$

Broadcasting example

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 100 & 100 & 100 \\ 200 & 200 & 200 \end{bmatrix} = \begin{pmatrix} m_{1} & 1 \\ m_{2} & m_{3} \end{pmatrix}$$

General Principle

$$(m, n) \qquad + \qquad (n, n) \qquad motion \qquad + \qquad (m, n) \qquad modeling \qquad + \qquad (m, n) \qquad modeling \qquad + \qquad (m, n) \qquad + \qquad R \qquad + \qquad (m, n) \qquad + \qquad (m,$$

Mathab/Octave: bsxfun

Basics of Neural Network Programming

Explanation of logistic regression cost function (Optional)

Logistic regression cost function

Logistic regression cost function

If
$$y = 1$$
: $p(y|x) = \hat{y}$

If $y = 0$: $p(y|x) = 1 - \hat{y}$

$$p(y|x) = \hat{y} \cdot (1 - \hat{y})$$

Cost on *m* examples

log
$$p(lolods)$$
 in troops set) = log $\prod_{i=1}^{m} p(y(i)|\chi(i))$

log $p(----) = \sum_{i=1}^{m} log p(y(i)|\chi(i))$

Movimum likelihood setiment

$$- \chi(y(i), y(i))$$

$$= -\sum_{i=1}^{m} \chi(y(i), y(i))$$

(ost: $J(w, b) = \frac{1}{m} \sum_{i=1}^{m} \chi(y(i), y(i))$

(minimize)