
 

Section 3: Gradient Descent & Backpropagation 
Practice Problems 
 
Problem 1. Computation Graph Review 
 
Let's assume we have a simple function . We can break this up into the(x, y, z) (x y) zf   =  +   

equations  and . Using this simplified notation, we can also represent x yq =  +  (x, y, z) qz f   =   

this equation as a computation graph: 
 

 
 
Now let's assume that we are evaluating this function at x = -2, y = 5, and z = -4. In addition let the 
value of the upstream gradient (gradient of the loss with respect to our function, ) equal 1.L/∂f∂  

These are filled out for you in the computation graph. 
 
Solve for the following values, both symbolically (without plugging in specific values of x/y/z), and 
evaluated at x = -2, y = 5, z = -4, and ∂L/∂f = 1: 
 
Symbolically  Evaluated: 

1. f  / ∂q ∂ =   f  / ∂q ∂ =  

 
2. q / ∂x ∂ = q / ∂x ∂ =  

 
3. q / ∂y ∂ = q / ∂y ∂ =  

 
4. f  / ∂z ∂ = f  / ∂z ∂ =  

 
5. f  / ∂x ∂ = f  / ∂x ∂ =  

 
6. f  / ∂y ∂ = f  / ∂y ∂ =  
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Problem 2. Computation Graphs on Steroids 
 
Now let's perform backpropagation through a single neuron of a neural network with a sigmoid 
activation. Specifically, we will define the pre-activation  and we will define x  w x  wz = wo o +  1 1 +  2  

the activation value . The computation graph is visualized below:(z) 1 / (1 e )α = σ =  +  −z  

 

 
In the graph we've filled out the forward activations, on the top of the lines, as well as the 
upstream gradient (gradient of the loss with respect to our neuron, ). Use this informationL/∂α∂  

to compute the rest of the gradients (labelled with question marks) throughout the graph.  
 
Hint: A calculator may be helpful here. 
 
Finally, report the symbolic gradients with respect to the input parameters, :, x , w , w ,xo  1  0  1 w2   

 
1. α / ∂x  ∂ 0 =   

 
2. α / ∂w  ∂ 0 =   

 
3. α / ∂x  ∂ 1 =   

 
4. α / ∂w  ∂ 1 =  

 
5. α / ∂w  ∂ 2 =    
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Problem 3. Backpropagation Basics: Dimensions & Derivatives 
 
Let's assume we have a two layer neural network, as defined below: 
 

 W  x  bz1 =  1
(i) +  1  

 ReLU (z )a1 =  1  

 W  a  bz2 =  2 1 +  2  

σ(z )ŷ(i) =  2  

(y ) (1 y ) (1 y )L(i) = y(i) * log ˆ (i) +  −  (i) * log −  ˆ (i)  

 J =  m
−1 ∑

m

i=1
L(i)  

  
Note that represents a single input example, and is of shape . Further is a singlex(i)  Dx × 1 y(i)  

output label and is a scalar. There are m examples in our dataset. We will use nodes in ourDa1
 

hidden layer; that is, 's shape is .z1 Da1
× 1  

 
1. What are the shapes of ? If we were vectorizing this network across, b , W , bW 1  1  2  2  

multiple examples, what would the shapes of the weights/biases be instead? If we were 
vectorizing across multiple examples, what would the shapes of  and be instead?X Y  

 
 
 
 
 

2. What is ? Refer to this result as . Using this result, what is ?J  / ∂y∂ ˆ (i) δ1
(i) J  / ∂y∂ ˆ  

 
 
 
 
 

3. What is ? Refer to this result as .y  / ∂z∂ˆ (i)
2 δ2

(i)  
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Equations reproduced below for the remaining parts of the question: 
 

 W  x  bz1 =  1
(i) +  1  

 ReLU (z )a1 =  1  

 W  a  bz2 =  2 1 +  2  

σ(z )ŷ(i) =  2  

(y ) (1 y ) (1 y )L(i) = y(i) * log ˆ (i) +  −  (i) * log −  ˆ (i)  

 J =  m
−1 ∑

m

i=1
L(i)  

  
Note that represents a single input example, and is of shape . Further is a singlex(i)  Dx × 1 y(i)  

output label and is a scalar. There are m examples in our dataset. We will use nodes in ourDa1
 

hidden layer; that is, 's shape is .z1 Da1
× 1  

 
4. What is ? Refer to this result as .z  / ∂a∂ 2 1 δ3

(i)  

 
 
 
 

5. What is ? Refer to this result as .a  / ∂z∂ 1 1 δ4
(i)  

 
 
 
 
 

6. What is ? Refer to this result as .z  / ∂W∂ 1 1 δ5
(i)  

 
 
 
 
 

7. What is ? It may help to reuse work from the previous parts. Hint: Be careful withJ  / ∂W∂ 1  

the shapes! 
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Problem 4. Bonus!  
 
Apart from simple mathematical operations like multiplication or exponentiation, and piecewise 
operations like the max used in relu activations, we can also perform complex operations in our 
neural networks. For this question, we'll be exploring the sort operation in hopes of better 
understanding how to backpropagate gradients through a sort. This is applicable in a variety of 
real-world use-cases including a differentiable non-max suppression, for object detection 
networks.  
 
For each of the following parts, assume you are given an input vector  and some x ∈ Rn  

upstream gradient vector , and you want to calculate  where F is a function of xL / ∂F∂ L / ∂x∂  

that also returns a vector. You may assume all values in x are distinct. Note that xo is the first 
component in the vector x: ( ). [x , x , ... , x ]x =  0  1   n−1  

 
1. F(x) = x0 * x 

 

 

 

 

 

 

 

2. F(x) = sort(x) 
 
 
 
 
 
 
 
 

3. F(x) = x0 * sort(x) 
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Section 3 Solutions 
 
Problem 1. Computation Graph Review 

 
 

1. f  / ∂q z ∂ =  =  − 4  

2. q / ∂x ∂ = 1  

3. q / ∂y ∂ = 1  

4. f  / ∂z  x  3∂ = q =  + y =   

5. f  / ∂x  ∂ = z * 1 = z =  − 4  

6. f  / ∂y  ∂ = z * 1 = z =  − 4  

 
 

 
Problem 2. Computation Graphs on Steroids 
 

 
 

1. α / ∂x  (z) (1 σ(z)) w∂ 0 = σ −  0   

 
2. α / ∂w  (z) (1 σ(z)) x∂ 0 = σ −  0   

 
3. α / ∂x  (z) (1 σ(z)) w∂ 1 = σ −  1   

 
4. α / ∂w  (z) (1 σ(z)) x∂ 1 = σ −  1  

 
5. α / ∂w  (z) (1 σ(z))∂ 2 = σ −     
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Problem 3. Backpropagation Basics: Dimensions & Derivatives 
 
  

1. . The shapes of the weights/biases, b , W , bW 1 ∈ RD ×Da1 x  1 ∈ RD ×1a1  2 ∈ R1×Da1  2 ∈ R1×1  

would be the same after vectorizing.  after vectorizing. , Y  X ∈ RD  ×mx  ∈ Rm ×1   

2. .  y / y  (1 y ) / (1 y )δ1
(i) =  (i) ˆ (i) −  −  (i) −  ˆ (i) J  / δy   δ ˆ =  − 1

m ∑
 

i
δ1

(i)  

3.  σ(z ) (1 σ(z ))δ2
(i) =  2 −  2  

 
4.  δ3

(i) = W 2  

 
5.  0 if  z  , 1 if  z  = 0δ4

(i) =  1 < 0  1 >   

 

6.  xδ5
(i) =  (i)T  

 

7.   δ δ  )δ6
(i) =  − 1

m ∑
 

i
δ1

(i)
*  2

(i)
* ( 3

(i)
° δ4

(i)
* δ5

(i)  

 
Problem 4. Bonus!  
 

1. As an example, say . Then . Then  [x , x , x ]x =  0  1  2 (x) [x , x , x ]F =  0 * x0  0 * x1  0 * x2 L/∂x∂  

will be a vector. For component i, where i is not 0, it is . For the 0thL/∂F  x∂ i *  0  

component, it will be .  L/∂F L/∂F2 * x0 * ∂ 0 +  ∑
 

i ≠ 0
∂ i * xi  

2. Sorting will simply reroute the gradients. As an example, say , we have [x , x , x ]x =  0  1  2  

upstream gradients , and . Then,L / ∂F  [∂ , ∂ , ∂ ]∂ =  0  1  2 (x) [x , x , x ]F =  1  2  0  

 (move gradients to reverse the transformation from x -> F(x)).L / ∂x [∂ , ∂ , ∂ ]∂ =  2  0  1  

 
3. This can be viewed as a computation graph where the multiplication happens first and 

then the sorting happens. As such, it simply requires rerouting the gradients to account 
for the sort as in #2, and then performing the multiplicative rules as in #1 to account for 
multiplying by x0. 
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