Colab Walkthrough

Neural Style Transfer

Let's say that for your final project you want to work on Neural Style Transfer. As a
starting point, you find a repository on Github
(https://github.com/anishathalye/neural-style) that can serve as a starting point for your
group. If you want to run this repository on your computer, you can do so using the
following steps.

Step 1: Installing git
Step 2: Using git to download the package

Step 3: Installing python3

Step 4: Installing pip3

Step 5: Installing virtualenv

Step 6: Creating a new virtual environment

Step 7: Installing the project's package dependencies

Step 8: Downloading the project's dataset / pretrained models
Step 9: Running the model

As you might notice, there are quite a few steps involved with testing something, and it
can be difficult to setup before running the project. Further, if you run the project on your
computer, chances are that it will take a few hours to run. This is because you are
running the project on your computer's CPU (these days models are mostly trained and
evaluated on GPUs, which are several orders of magnitude faster).

Instead of installing packages on your computer, if you want to test a project quickly,
there is an alternative - Google Colab.

https://github.com/anishathalye/neural-style

What is Google Colab?

Colab (short for Colaboratory) is a product offered by Google Research that allows
machine learning researchers to work on projects in the browser. Similar to Google Docs,
it allows you to share projects between many people, and best of all, it gives free access
to GPUs for you to quickly train models without any signup.

When working on your projects, we recommend testing your code on a portion of your
dataset on your own computer, or on Google Colab initially. You can use these tools as a
quick way to see if your code has bugs or if the output of your model is reasonable. After
testing initially, you can then copy your code and full dataset to your group's AWS
instance to run the full version of your model (as testing locally / on Colab is free,
whereas you will be using the course credits for running on AWS).

Getting Started

Visit http://colab.research.google.com. You should see a page like this. Click the "New
Python 3 Notebook" in the bottom right corner.

Filter notebooks

Title First opened Last opened

Welcome To Colaboratory Feb 20,2018 0 minutes ago

Meural Style Transfer with Eager Execution 2 days ago 0 minutes ago

Untitled3.ipynb 3 hours ago 3 hours ago

Copy of Neural_style_example.ipynb 22 hours age 3 hours ago

Untitled2.ipynb 4 hours ago 4 hours ago

NEW PYTHON 3 NOTEBOOK CANCEL

That will bring you to a page like this. This is your new project's notebook, a document
that you can code in and run models in. You can click "Untitled.ipynb" in the top left
corner to change the title of your document, or click "Share" in the top right corner to
share it with other people.

& Untitledd.ipynb

File Edit View Insert Runtime Tools Help

B comment &% Share A o

+ Code + Text Connect ~ # Editing ~

. EECAE-D S
0!

Each notebook is composed of a list of cells. These cells can contain text (where you
might describe what you're doing) and code (where you can type Python and run it). This
notebook format is very similar to the Coursera homework assignments.

http://colab.research.google.com/

Before you start running code, there's one quick step to do first. Click on "Runtime" and
then "Change runtime type". You should see the following window pop up:

Runtime Tools Help

Run all 38/Ctrl+F9
Run before 38/Ctrl+F8 Nntebook settings
Run the focused cell #8/Ctrl+Enter
1 Run selectien 3 /Ctrl+Shift+Enter F
Run after 38/Ctri+F10 Runtime type

Python 3

Hardware accelerator

MNone o @

Reset all runtimes...

[] omit code cell output when saving this notebook

Change runtime type

Manage sessions

CANCEL SAVE

Make sure that "Python 3" is selected as the Runtime type (this is the version of Python
we are using). Then, make sure "GPU" is selected for the Hardware accelerator. This will
allow us to run deep learning models in the matter of minutes instead of hours. You can
then click save.

Now, click the "Connect" button in the top right. After doing so, you should see a green
checkmark, indicating you have successfully connected to a GPU to run your code.

RAM 1 -
Connect v “Disk

To make sure everything is working, try writing some Python in the notebook (click on
the open cell). You can run it by pressing SHIFT + ENTER. As an example, you might see:

[1] print{"Helle Python"}

[+ Hellec Python

Running Neural Style Transfer

Now going back to our original neural style transfer project,
https://github.com/anishathalye/neural-style, let's say you want to try running this on
Colab. There are a few steps to follow:

Step 1: Downloading the Project

By default, each cell in Colab runs Python code. However, we can also run special
commands to download projects and install packages using a ! before the command. For
example, to download the project, you would run:

[1] !git clone https://github.com/anishathalye/neural-style.git
[* Cloning into 'neural-style’'...
remote: Enumerating objects: 292, done.
remote: Total 292 (delta 0), reused 0 (delta 0), pack-reused 2%2

Receiving objects: 100% (292/292), 2.63 MiB 2.15 MiB/s, done.
Resolving deltas: 100% (158/158), done.

Now that the project has been downloaded, you want to enter that project directory. You
can do so using the ed command, which in colab requires a % before it:

[4] %cd neural-style

[+ /content/neural-style

The outputted /content/neural-style is the new directory you are in.

Step 2: Installing the Package Requirements

Generally Python projects come with requirements.txt files that indicate which packages
that codebase depends on. You can see this file using the cat command, as shown
below:

https://github.com/anishathalye/neural-style

[5] !ecat reguirements.txt

[» numpy
Pillow # provides PIL

scipy==1.1
tensorflow-gpu >= 1.0 # installs tensorflow with GPU support, should still work even without GPU

This project depends on numpy (for math operations), Pillow (for manipulating images),
scipy (for scientific operations), and tensorflow-gpu (for training neural networks on the
GPU). You can install these packages by running the following. You might get some
warnings/errors but you can ignore those.

o Ipip install -r reguirements.txt

Now as one final step, you'll need to install tensorflow 1.13.2. In the requirements file, the
author lists numpy, Pillow, scipy==1.1, and any version of tensorflow >=1.0. Just recently a
new version of tensorflow was released (2.0) and this codebase no longer works with
2.0. To install the right version of tensorflow, run:

[B] !pip install tensorflow-gpu==1.13.2

With that step complete, all the packages and source code you need to run the project
should be downloaded and you should be ready to go.

Step 2: Downloading the Pretrained Model

This repo contains a pretrained model called VGG that you will need to download before
running. You can do so using the wget command, as shown below:

[4]

Iwget http://www.vlfeat.org/matconvnet/models/imagenet-vgg-verydeep-19.mat

--2019-10-04 23:22:53-- http://www.vifeat.org/matconvnet/models/imagenet-vgg-verydeep—19.mat
Resolving www.vlfeat.org (www.vlfeat.org)... 64.90.48.57

Connecting to www.vlfeat.org (www.vlfeat.orqg)|64.90.48.57|:80... connected.

HITF request sent, awaiting response... 200 OK

Length: 534904783 (510M)

Saving to: ‘imagenet-vgg-verydeep-19.mat’

imagenet-vgg-veryde 100%[===s==s=s===========>] 510.12M 21.ZMB/s in 24s

2019-10-04 23:23:17 (21.2 MB/s) - ‘imagenet-vgg-verydeep-19.mat’ saved [534904783/534904783)

Step 3: Running and Visualizing the Output

To run the model:

9

Ipython neural style.py --content examples/Z-content.jpg --styles examples/l-style.jpg --output ocut.jpg

To visualize the inputs/outputs:

[10] %matpletlib inline

import matplotlib.pyplot as plt
import matplotlib.image as mpimg

img = mpimg.imread('examples/l-style.jpg')
imgplot = plt.imshow({img)

100

200

300 &
400

500

[12] img = mpimg.imread('examples/2-content.jpg')
imgplot = plt.imshow{img)

100
150

200

300

350

0 100 200 300 400 500 600

[13] img = mpimg.imread('ocut.jpg')
imgplot = plt.imshow{img)

100
150
200
250
300

350 §

