InstaFashion: Clothing Detection and Classification with YOLO

Kevin Fry
Stanford University
kfry@stanford.edu

Abstract

In this paper, we develop an algorithm that allows users
to detect and classify items of clothing within an image. Our
algorithm, InstaFashion, is a deep neural network model
built on the You Only Look Once (YOLO) version 1 archi-
tecture with 24 convolutional layers followed by 2 fully con-
nected layers. We pretrain the convolutional layers on the
Street2Shop open source images at half the resolution (224
X 224 input image) and then double the resolution for de-
tection. For comparison, we use the VGG-16 pre-trained on
ImageNet as a benchmark to assess performances on loss
and mean average precision (mAP). Our best YOLO model
achieves a test mAP of 0.719,outperforming the baseline
sliding window model, which only achieves a mAP of 0.559.
Further validating the correctness of our YOLO implemen-
tation, our test mAP is similar to what the original YOLO
paper achieved on the PASCAL VOC dataset.

1. Introduction

Online shopping and e-commerce is an exponentially
growing market. Retail sales world-wide, including both in-
store and internet purchases, totaled more than $23.4 trillion
in 2017. By 2021, e-commerce retail spending is projected
to increase to nearly $4.8 trillion, more than double of what
it currently is in 2018 at $2.8 trillion. Much of this purchas-
ing is related to shopping for clothing items. However, find-
ing exactly what you want from online shops is still not a
solved problem. In this paper, we look at one task related to
online shopping, the street-to-shop problem. Given a real-
world photo of a clothing item, e.g. taken on the street, the
goal of this task is to find that clothing item in an online
shop.

We aim to build an object detection network using the
YOLO architecture that takes a real-world image and de-
tects as well as classifies the pieces of clothing. Such an ap-
plication could be useful today, as consumers seek to con-
veniently locate items similar to what they see in images
within online marketplaces. This task is challenging be-
cause of the discrepancies between real-world images that

Xianming Li
Stanford University

xmli@stanford.edu

4321

Vivian Yang
Stanford University

vivianca@stanford.edu

have noisy backgrounds with various perturbations of the
clothing items and the stock-photo images of clothing items
that exist online. For example, clothing will be worn on a
person in street photos, whereas in online shops, clothing
items may also be portrayed in isolation or on mannequins.
Shop images are professionally photographed, with cleaner
backgrounds, better lighting, and more distinctive poses
than may be found in real-world, consumer-captured photos
of garments. To deal with these challenges, we introduce a
deep learning based methodology to learn a similarity mea-
sure between street and shop photos.

2. Literature Review

The machine learning community has created a wide
body of work on image detection and classification. You
Only Look Once was first introduced in 2015 as the state of
the art real-time object detection algorithm. Prior work on
object detection had repurposed classifiers to perform detec-
tion. YOLO approached detection as a regression problem
optimizing for bounding boxes and associated class prob-
abilities. A single neural network predicts bounding boxes
and class probabilities directly from full images in one eval-
uation. Since the whole detection pipeline is a single net-
work, it can be optimized end-to-end directly on detection
performance. YOLOs unified architecture is extremely fast
and is able to achieve double the mean average precision
(mAP) of other real-time detectors. Compared to state-of-
the-art detection systems, YOLO makes more localization
errors but is far less likely to predict false detections where
nothing exists. By learning very general representations of
objects, YOLO is able to outperform many other detection
methods, including DPM and R-CNN.

3. Dataset

We adapted the dataset from the Street to Shop model
(Kiapour et al., 2015) consisting of images of people
photographed in everyday settings with bounding boxes
(t,1,w, h) around items of clothing (Figure 1). The dataset
has 18,000 images, 31,000 bounding boxes (averaging 2
bounding boxes per image, with a maximum of 17 bounding

Figure 1. Example image

Figure 2. Example image

boxes for one image), and 11 classes: bags, belts, dresses,
eyewear, footwear, hats, leggings, outerwear, pants, skirts,
tops. Content wise, the Street to Shop dataset was reason-
ably appropriate for our needs; however, extensive prepro-
cessing of the data was required to fit our specific applica-
tion.

A sample data point from the dataset is as follows:
{”photo”: 2281, ”product”: 7871, "bbox”: {"width”: 112,
”top”: 335, "height”: 204, "left”: 59} }

4. Preprocessing

We conducted extensive preprocessing on the dataset to
fit it to our novel application. Because the original dataset
was intended to be used in a retrieval task, preprocessing
was necessary in order to consolidate the images and bound-
ing boxes into a tensor that could be used as input into the
YOLO architecture.

4.1. Conversion

We first converted the training dataset into 3D tensor of
size 18397 x 15 x 6 [number of images X max number of
bounding boxes per image x (id, class, X¢, Y, w, h)].

4322

4.2. Standardization

After comparing YOLO, VGG-16, and RCNN archi-
tectures for our model and deciding to implement YOLO
and VGG-16, we standardized the sizes of the images in
our dataset to fit the needs of each particular architecture.
YOLO vl required size 448 x 448, and VGG-16 required
224 x 224. We cropped images to bounding boxes and then
resized appropriately. In addition, we also filled in black
margins vertically and horizontally as needed.

4.3. Alignment

In alignment with the amount of data we had as well as
our computational resources, we allocated the dataset ac-
cording to an approximately 90-5-5 split (Figure 2).

Partition | Number of Images
Training 16439
Validation 979
Test 979
Total 18397

Figure 2: Data Splits

5. The YOLO Model

We implemented YOLO vl with a 7 x 7 grid and 5
bounding boxes per grid as in Redmon et al. We use pre-
trained weights trained on ImageNet for the first 20 layers
of the model, and train the final four convolutional and two
fully-connected layers on our dataset to fine-tune our model.
We trained two models following this architecture: one with
a static learning rate (le-5), and one with a dynamic learn-
ing rate that changed over the course of training.

5.1. Hyperparameter Tuning

It is known that YOLO v1 suffers from unstable gradi-
ents early on in the training. This is due to the fact that it
is trying to predict (x,y) coordinates for the boxes (this is
remedied in YOLO v2 by instead calculating offsets from
predetermined anchor boxes). As a result, Redmon et al.
trained YOLO using a specific learning rate schedule with a
smaller learning rate for the first few epochs, then increas-
ing the learning rate in the middle of training, and then
reducing the learning rate again towards that latter part of
training.

Initially we used the same learning rate schedule, but
found the gradients were still too unstable to train properly.
We first tried lowering the learning rate (from the le-3 in
Redmon et al. to 1e-4 and then 1e-5), but it was still too un-
stable to train more than a few dozen batches before getting
NaNs . Then we experimented with two other hyperparam-
eters: the 12 penalty and gradient clipping.

We tried several values of the 12 penalty (0.01, 0.1, and
0.2) and gradient norm clipping (0.25, 0.5, and 1) in com-
bination with the lowered initial learning rates of le-4 and
le-5. With a learning rate le-4 we got NaN losses for all
values of the 12 and gradient clipping parameters. We also
found that the 12 penalty was not enough to stabilize the
training, even with the le-5 learning rate. With the lower
learning rate we found that gradient clipping at any value
stabilized our training, with or without any 12 penalty.

Not wanting to add unnecessary hyperparameters to our
model, we decided to use only gradient clipping with norm
1 and discard the 12 penalty. We then experimented with
several learning rate schedules. We first describes the ones
that did not work:

e le-4 for the first 5 epochs, then raise it to le-3 over
the next 5 epochs, then to le-2 over the following 5,
training at le-2 for 60 epochs, 1e-3 for 30, then le-4
for the final 30.

le-5 for the first 5 epochs, then raise it to le-4 over
the next 5 epochs, then to 1e-3 over the following 5,
training at le-3 for 60 epochs, 1e-4 for 30, then le-5
for the final 30.

le-5 for the first 5 epochs, then raise it to le-4 over
the next 10 epochs, then to 1e-3 over the following 10,
training at le-3 for 50 epochs, 1e-4 for 30, then le-5
for the final 30.

Finally we found a learning rate schedule that worked:
le-5 for the first 15 epochs, then raise it to le-4 over
the next 10 epochs, then to 1e-3 over the following 10,
training at le-3 for 50 epochs, le-4 for 25, then le-5
for the final 25.

5.2. Training

We trained two versions of our YOLO model, one with
a static learning rate, another with a dynamic learning rate
schedule described above with the Adam optimizer. The
static learning rate model had a learning rate of 1e-5 for the
entire 135 epochs of training. This model was chosen partly
for its simplicity and partly because we were more confi-
dent it would train fully without failing. We also trained
the dynamic learning rate model because the more aggres-
sive learning rate in the middle portion of training makes it
more likely to find a better local optimum.

5.3. Baseline Model

For the baseline we implemented a simple sliding win-
dow model that performs image classification on each win-
dow using VGG16 model. We take the feature extractions
from the KERAS pretrained VGG16 model and then train
two fully-connected layers with 64 and 11 units, respec-
tively, to learn class probabilities on our dataset. We trained

4323

Training: Loss and mAP vs. Epoch

10000 1.00

8000 0.95

6000 10.90

Loss
mAP

4000 40.85

2000 0.80

0.75
140

60 80 100 120

Epochs

20 40

Figure 3. Static Training

this model for 100 epochs on the training dataset with the
standard Adam optimizer. This very crude model is not very
good, but is a decent baseline to compare our YOLO models
against.

6. Results

We wrote our own implementation of the YOLO loss
function and the mean average-precision metric (mAP),
and tracked them throughout the training of our models.
Counter to our intuitions that the dynamic learning rate
model, with its larger step size, would find a better opti-
mum, it turns out that the static learning rate model per-
formed better, achieving a test mAP of 0.72, while the dy-
namic learning rate model only achieved a test mAP of 0.69.
They both significantly outperformed the VGG16 sliding
window baseline, which only got 0.56 test mAP. Further
validating the correctness of our YOLO implementation,
our test mAP is similar to what the original YOLO paper
achieved on the PASCAL VOC dataset.

6.1. Static

The static learning rate model achieved an mAP of 0.72
on the validation set after training for 135 epochs. We
thought that would be the baseline for comparison with the
dynamic learning rate model, which we trained next.

mAP: 0.7197916666666667

Loss: 5018.02041015625

6.2. Dynamic

Contrary to our expectations, after training for the same
number of epochs the dynamic learning rate model achieved
an mAP of 0.69 on the validation set, which is not as good
as the static learning rate model.

mAP: 0.6895833333333333

Loss: 7850.24677734375

6000

Validation: Loss and mAP vs. Epoch

5500

5000

4500

4000

Loss

3500 H

3000

2500

2000
0

10000

8000

6000

Loss

4000

2000

3400

20 40 60 80 100
Epochs

Figure 4. Static Validation

Training: Loss and mAP vs. Epoch

U

20 40 60 80

Epochs

Figure 5. Dynamic Training

Validation: Loss and mAP vs. Epoch

3200

3000

2800 |

Loss

2600

2400 |

2200 |

2000
0

Epochs

Figure 6. Dynamic Validation

0.77

0.76

0.75

0.74

0.73

0.72

0.71

0.70

140

0.90

0.85

0.80

0.75

0.80

10.75

0.70

0.65

0.60

0.55

0.50

mAP

mAP

4324

7. Discussion

In this paper we implemented the YOLO vl model in
Keras/Tensorflow from scratch, and trained it to detect and
classify clothing in images usinng the Street2Shop dataset.
We used initial weights pre-trained on ImageNet and trained
the last 6 layers of the network. We experimented with
various types of regularizers and hyperparameter values to
overcome instability in early training. We showed it learned
to detect and classify clothing at a level far better than the
sliding window baseline and comparable to Redmon et al.s
performance on the PASCAL VOC dataset.

There are some fairly obvious next steps: upgrade
the network architecture to YOLO v2. The batch-
normalization, use of anchor boxes, and bounding box
specific classification produce significant performance im-
provements in v2 provide significant improvements. We
would also like to compare it against other real-time detec-
tion and classification architectures such as Fast(er)-RCNN
and Mask-RCNN.

However, in our opinion, the biggest barrier to turning
this model into something practical, something that people
would actually use to identify clothing in images, is a better
dataset. Our dataset had very crude class labels such as bag
and dress. A dataset with thousands of labels specifying the
style, color, and even brand of the clothing would allow us
to train a model that could detect and classify images at a
level granular enough to be truly useful to people.

References

[1] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi.
You only look once: Unified, real-time object detection.
arXiv preprint arXiv:1506.02640, 2015.

[2] M. Hadi Kiapour, Xufeng Han, Svetlana Lazebnik,
Alexander C. Berg, and Tamara L. Berg. 2015. Where
to Buy It: Matching Street Clothing Photos in Online
Shops. In Proc. ICCV

[3] Z.Liu, P.Luo, S. Qiu, X. Wang, and X. Tang. Deepfash-
ion: Powering robust clothes recognition and retrieval
with rich annotations. In CVPR, 2016.

[4] K. Simonyan, A. Zisserman. Very Deep Convolutional
Networks for Large-Scale Image Recognition

