A Recurrent Neural Net for Neurons: Continuous
Decoding of Intracortical Brain Signals for BMI
Applications

Jonathan Zwiebel Samuel Lurye
Computer Science, Class of 2021 Electrical Engineering, Class of 2020
Stanford University Stanford University
jzwiebel@stanford.edu slurye@stanford.edu
Robert Ross

Computer Science, Class of 2021
Stanford University
rross@stanford.edu

Abstract

Our project seeks to create a model for making continuous predictions of arm posi-
tion based on neuron activity. Our data set consisted of labelled neuron-position
sequences measured via surgical implants on monkeys provided by Professor
Krishna Shenoy of the Neural Prosthetics Systems Lab. Our works focuses on
many-to-many LSTM networks and includes experimentation with different dataset
parameters and model targets. We tuned models to predict relative position, in-
stantaneous velocity, and binned velocity and found that the models with relative
position as their target gave the best path predictions. We also experimented with
different data sampling methods and found that subsequences of 400 - 500 ms
provided adequate training speed without compromising the performance of the
model. Our final model was able to outperform our baseline Wiener model with a
mean squared error on position of 17.5 cm, compared to the Wiener model 32.3
cm.

1 Introduction

Brain machine interfaces (BMIs) have recently emerged from academic labs as viable clinical options
for paralyzed patients. Using just thought, patients are able to move robotic arms and computer
cursors with increasing precision and dexterity. These neural prosthesis have enormous potential as
medical devices for patients with neural degeneration.

The purpose of this project is to develop a deep learning decoder for BMIs. Expanding on existing
linear models, this project systematically builds a many-to-many LSTM network that can continuously
decode a high-dimensional neural signal into a set of X-Y coordinates. Beginning with a simple RNN,
we iteratively derive a tailored architecture and set of hyper-parameters that minimizes prediction
error and minimizes training time.

CS230: Deep Learning, Spring 2018, Stanford University, CA

2 Dataset

The data for this project consisted of 11,136 trials [1] of a non-human primate performing radial
reach tasks to one of 48 targets.

Alongside the X-Y position of the monkey’s hand at every millisecond, the trial included a size
192 binary vector for each time step. This column vector corresponded to the 192 electrode array
implanted in the monkey’s motor cortex. A 1 in the ith row of the vector indicates that a ‘spike’ had
occured in the neuron adjacent to the ith electrode at a given point in time. Horizontally concatenating
these vectors produced a matrix of size 192 x the length of the trial in milliseconds, which varied.

20 Random Trials of Monkey Hand Position

e

Y (em)
Electrode Number

0 200 400 600 800 1000 1200 1400 1600 1800
Time (ms)

-150 100 50 0 50 100 150

X (em)
RN . | ... SOOI eeessessssessssesscssssesssscssssesscssnsns
Figure 1- Monkey’s hand position in 20 random Figure 2- Example neural data. Every blue dot
trials. All 48 targets overlayed represents a \;\ll\c at an electrode at a given time point

In order to confirm that the neural data had sufficient variability among different reach directions for
our model to differentiate, we performed PCA for a better visualization. We projected the data for 4
orthogonal reach directions onto the 3 top Principal Components and plotted their boundaries. The
colors of surfaces correspond to the colored targets in Figure 1.

As a final pre-processing step, we extracted velocity and target vectors from the positional data.
The velocity was calculated using a first-order euclidean approximation with a step size of 25ms.
The target vectors were derived by normalizing the distance from the X-Y position of the hand to
the intended target at any one time. These derived features were used to implement different loss
functions during the architecture design phase.

. .
: E g :
4 ' .
9 toe .
e ' .
* ' .
. ' .
. LI S .
. d v S 3 .
. { v . E .
e 15 s s = =
. v o 2 .
. 4 v . 8 .
. .
. s . 2 H
. . « © .
. _ 0 . e
e 8 \ s o+ 3 .
. g ot ‘% . o £, .
) ~ . &
. o ‘ v o £ H
M \ v o = H
. .
e 05 ¢ H
. . . .
. .
. > 2 - H
. 05 e L 0 v d .
] P . 6 164 1 .
e T i pe P o 0 200 400 600 800 1000 1200 1400 1600 1800 &
. PC2 [Time (ms) H
. 4 LR R N
tevsevsessesrrressessrrrrsessersrrersrserney .

Figure 4- Magnitude of velocity over 25 random
trials. Note that increased velocity correlates with
increase in neural activity per Figure 2

Figure 3- Boundaries of neural data from all 192
clectrodes across all trials plotted on top 3 Principal
Components

Given the moderate size of our dataset and the sparsity of our dataset, we opted for a 80-10-10 split
between our training, dev, and test sets. We did not use a train-dev set despite the fact that our training
was done over shortened sequence and our dev/test analysis was done over sequences of length 800.
Given additional time we would have generated a train-dev set.

3 Model Architecture

3.1 Overview

Given the sequential nature of both the input and output data we opted for a many-to-many architecture
with a cell for each labelled time interval (1 ms) and unique predictions of position or velocity from
each cell. We initially experimented with both plain RNN and GRU cells but found that LSTM cells
(shown in green) significantly outperformed them at a marginal cost to training time. We fed the
output of each LSTM cell into a series of fully connected ReLU layers (shown in purple) which
gradually reduced the size from the cell hidden state size to two. The final fully connected layer did
not include any activation function as our output values were real-valued numbers without an explicit
bound.

[Loss (RMSE or Huber) e AL e p ® : Velocity to Position Steps

e

| t - ‘ : ‘
Y — L

ﬁ/ﬁ

(RNN Cell (LSTM no peepholes shown)

o - gam H;
I
® OO

3.2 Prediction Targets

Our dataset provided absolute measurements of position measured every 12 ms. Given that our
models were trained with sequences starting at arbitrary points in each training sequence and that
linear methods had shown prediction of velocity to be successful, we opted to not use the raw absolute
position as our target value. Instead we experimented with three different target values for the model
to predict: relative position, instantaneous velocity, and binned velocity.

Relative Position: We calculated position values for each timestep relative to the position value at the
first measurement in the sequence. Given that our raw dataset included true position we directly fed
our prediction and ground truth into our loss function.

Instantaneous Velocity: We calculated measurements of instantaneous velocity by comparing raw
position measurements taken at maximum resolution (12 ms). We then repeated each value for 12
outputs so that our values in our input and output sequences both represented measurements taken at
1 ms intervals. We fed these stepped velocity measurements and our prediction into our loss function.

Binned Velocity: This approach resulted in sequences were each timestep represented data over 25
ms blocks. For our input sequences we took the total count of how many times each neuron fired
over the 25 ms block to create a size 192 vector of integers. Our output sequences were created
using the same approach as instantaneous velocity except they were taken over 25 ms intervals and
their values were not repeated. This resulted in input and output sequences 25 times shorter than in
the models that used relative position and instantaneous velocity. We fed this binned calculation of
velocity and our prediction into our loss function. Our reasoning behind the binned approach was that
it would reduce the sparsity of the input data and ensure that neural impulses at similar time steps
were counted together.

3.3 Sequence Selection

A major decision point in our models was how to sample our data sequences. Longer sequences
result in slower training but better paths when the models are applied to standardized sequence
lengths. Additionally it was important that our sequences contained periods of time with motion.
Both sequence length (ms) and sequence starting point (ms from start) were hyperparameters in our
model.

3.4 Loss Function

We concatenated the predictions made at each timestep to create a sequence of predictions which
we fed into our loss functions. We experimented with both MSE loss and Huber loss, a robust loss
function similar to MSE loss, in our models. We quickly found that Huber loss resulted in quicker
reduction of our loss value, but ultimately did not result in better predictions as scored by our scoring
function (3.5), so we used MSE loss for the majority of our training.

3.5 Score Function

In order to standardized the comparison of our models given their different sequence lengths and
targets we developed a standard scoring function. Each model, regardless of the length training
sequence, was tested on input sequences of 800 ms. The models that outputted velocity had their
output stepped forward into position, and the models which used binning had their outputs repeated
such that there was a single prediction for each ms of data. In this way, each model provided a
predicted set of 800 positions, spaced 1 ms apart. We used simple mean squared error between the
raw output values and our prediction values to score each path, and took the average over all training
examples as the final model score.

3.6 Clipping

In order to deal with issues of exploding gradients we implemented gradient clipping across all
weights in the LSTM cell.

3.7 Rejected Architectures

Bidirectional RNN: While a bidirectional sequence model would have improved predictions on our
labeled dataset, it would not be appropriate for continuous decoding as the problem requires that
predictions are generated in real-time.

Repeatedly Sampled Deep Networks: We considered constructing training examples of short se-
quences (50 ms) that used the full 192 x 50 array as an input and a single size 2 vector representing the
difference in position as an output. We opted to not use this method as we did not have a good intuitive
understanding of how long it would take a neuron firing to propagate into movement. Additionally
we were unsure if there was a consistent time period between neural impulse and motor movement
across different neurons.

4 Tuning

While optimizing models for each of our three target values we tuned the following hyperparameters:

Hidden state size in LSTM cells
Learning rate
Batch size

Initial skip length and sequence length

A R

Number of fully connected layers and layer size
The following hyperparameters were left as their default values:

1. Gradient clipping boundaries: -1 to 1

. LSTM cell activation function: tanh
. FC layers activation function: ReLU
. Adam beta 1: 0.9

. Adam beta 2: 0.999

. Adame: 1078

AN L AW

4.1 Hidden State Size

We initially started training with 200-300 hidden state size in the LSTM cells. The loss experienced
frequent jumps after 500 epochs and the predicted coordinates were poor even after long training runs.
We lowered the hidden state size to 50 to achieve faster training and found that the loss decreased
mostly monotonically and predictions improved. We anticipate that the size 200-300 network would
eventually achieve superior performance but at the expense of a very long training process (2500
epochs). Cells with a hidden state of size 50 produced functional performance after only 1000 epochs.
Final Parameter: 50

4.2 Learning Rate

Given the natural variability in loss decrease while using the Adam Optimizer, we had to compensate
by using a smaller learning rate. We found that anything greater than the default 0.001 would cause
frequent jumps in the loss Final Parameter: 0.0005

4.3 Batch Size

Given the sparsity of our input dataset we opted for large batch sizes. We found that batch sizes of
4096 or greater resulted in large jumps in training loss. We used the largest batch size possible that
gave a mostly monotonically decreasing loss. Final Parameter: 512

4.4 Number of FC Layers and Layer Size

We experimented first with a large number of FC layers but found that only a single hidden layer
(along with the output layer) was sufficient to produce good results. We additionally found that
without dropout, more than 1 hidden layer resulted in severe overfitting of our data. Given that
the size of the hidden state played a large part in our FC layer size, we did not have much time to
experiment with different values. We experimented both with values near the hidden state size (50)
and values near the output layer size (2) and found that 30 was the best layer size. Final Parameter:
1 hidden FC layer with 30 units

5 Results

The Many-To-Many RNN with positional loss was the top performing deep learning model. Trained
with the optimal hyper-parameters outlined above, the model predicted paths better than our baseline
linear model, the Wiener Filter. We scored our models using Root Mean Squared Error between
predicted pathways and actual monkey hand movements.

Architecture MSE

No Prediction (0,0) 465.76

Wiener Filter 32316

Best Position RNN 17.535

Best Velocity RNN 118.56

Best Velocity Bin RNN 34378
Figure 5- Table of RMSE score values for each model

These score values were reflected in the subjective appearance of the paths predicted by each model.
Below, we have included some average performances from our model and the baseline Wiener Filter.

Wiener Filter Predictions:
20 20
0
-20
-40
-60
80 0

100 H
120 100 20 5 b 2 ¢ 2 %0 20 00 0 0 40 20 0 20

Best LSTM Model Predictions:

Epoch 300 Epoch 600

Epoch 1200 Epoch 900 Epoch 1200 Epoch 900

Figure 6a - Sample prediction over 1200 epochs

wsing RNN (red) vs true position (black)

6 Conclusion

We found that position was the best target value to optimize for, and that models that optimized on
velocity suffered from overfitting on the training set or simply did not train well. Our best LSTM
model was able to outperform the naive Wiener filter and produced usable predictions of position.
We did find that the predicted paths were excessively rough to serve as direct values for a cursor,
so additional post-processing of their values would be needed before they could be used for cursor
control.

7 Future Work

Given additional training time we would use a more sophisticated loss and score function. In particular
we would like to penalize smoothness of the prediction and develop a loss function that depends on
both position and velocity. Additionally we would like to experiment with RNN architectures that
explicitly pass predicted outputs as inputs into future cells (ex: echo networks).

One other method we considered but did not attempt was to develop a dimensionality reduction of
the input data to deal with the issue of artificial sparsity in the input data. One method we considered
was using an attention model to develop an ‘encoding’ of neural firing states similar to the methods
used for NLP. The logic behind this method is that there are many related neural states or states that
follow each other. Another method was simply to pass PCA reduced vectors in as input.

Finally, given additional resources we would attempt to take measurements of subjects performing
motion tasks with more complex motion than the radial ones used for our dataset.

8 Code and Dataset

Our code can be found at www.github.com/JonathanZwiebel/cs230-project. Our dataset is not
currently available to the public.

References

[1] Sussillo, D., Nuyujukian, P., Fan, J. M., Kao, J. C., Stavisky, S. D., Ryu, S., & Shenoy, K. (2012). A recurrent
neural network for closed-loop intracortical brain—-machine interface decoders. Journal of Neural Engineering,
9(2), 026027. http://doi.org/10.1088/1741-2560/9/2/026027

[2] Barak, O. (2017). Recurrent neural networks as versatile tools of neuroscience research. Current Opinion in
Neurobiology, 46, 1-6. doi:10.1016/j.conb.2017.06.003

[3] Giiclii, U., & van Gerven, M. A. J. (2017). Modeling the Dynamics of Human Brain Activity with Recurrent
Neural Networks. Frontiers in Computational Neuroscience, 11, 7. http://doi.org/10.3389/fncom.2017.00007

[4] Kao, J., Stavisky, S., Sussillo, D., Nuyujukian, P., & Shenoy, K. (2014). Information Systems Opportunities
in Brain—Machine Interface Decoders. IEEE.

[5] Olah, C. (2015, August 27). Understanding LSTM Networks. Retrieved from colah.github.io/posts/2015-08-
Understanding-LSTMs/

