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1 Motivation and Problem Statement

Indoor robotics and Augmented Reality are fast becoming the fundamental building
blocks of future home living. However, fast R-CNN evaluations on indoor images are little
to non-existent due to lack of access to data driven mainly by privacy issues and cost of
acquisition. A variety of fast R-CNN networks including Mask R-CNN exist for outdoor
scene understanding. My motivation is to understand whether a modified, state-of-the-art
Mask R-CNN would perform well on 3D projected to 2.5D (RGB+Depth dimensions) indoor,
high-definition, 1080X1080 dataset.

The last few years have seen rapid development of fast scene understanding algorithms.
However, many algorithms do scene understanding tasks on 2D data sets. The extension of
fast R-CNN algorithms to RGB-D or full 3D data sets is in its infancy. Sophisticated NNs
such as PointNet exist which first construct a 3-D point cloud or mesh and the 3D objects
and instances on the mesh surfaces are annotated. While this approach gives us the best
possible world co-ordinates and 360° panoramic depth, it is highly compute intensive and
expensive to train and evaluate.

Recently, Facebook AI Research (FAIR) released code for a Mask R-CNN backbone
which is state-of-the-art for 2D scene understanding tasks including instance segmentation.
Matterport, a 3D imaging camera manufacturer, has adapted that code to release a more
extendable MR-CNN code constructed on Keras and Tensorflow frameworks. Our goal is
to investigate whether Mask R-CNN or a modified Mask R-CNN backbone on 2.5D RGB-D
indoor images would perform well. We will further investigate whether hyper parameters or
the network architecture need to be tuned differently to elicit the best performance.

2 Methods

Guided by the equirectangular 3D to 2.5D semantic data conversion approach described
by Armeni et al., (2017)(http://3Dsemantics.stanford.edu/), we are proposing an architec-
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ture that trains a modified Mask R-CNN in 3 stages to take advantage of early stopping in
each stage to cut down training and validation time.

In stage 1, we train the modified Mask R-CNN on just the backbone’s Network heads.
In stage 2, we fine-tune on ResNet layers 5 and up. In the final 3rd stage we further fine
tune on all layers. This approach helps us stop training, if necessary, to just 1 or 2 stages,
if a smaller network is able to remove bias and fit the 2.5D data well. In our experiments,
we trained with batchsize = 2 (due to memory limitations) and the losses converged well
enough for early stopping to kick in prior to 20 epochs in stage 1 and less than 5 epochs in
stages 2 and 3.

The seminal part of the work required generating ground truth data (masks and bounding
boxes) on images that were per pixel labeled at an instance level (color-coded instances).
This effort involved heavy code development in two areas:

1. Label Map generation:For producing the label map, we relied on indexing every
pixel’s color value to a 256-base number. The color index of each pixel location is
encoded as: ColorIndexpizioc = 256 * 256 % RG Byiyioc[0] + 256 ¥ RGBpigioc[1] + 1 *
RGByizioc[2]. Separately, a 1-Dimensional label array is created where each label is
indexed as: Label Array|ColorIndex,izo.] = LabelString. The LabelString is a con-
catenation of Labell D, Label N ame, Area, Location among other items. Each pixel’s
label is then obtained by returning the LabelString attached to that pixel in the
Label Array. Our code for creating labeled masks can be found on our github.

2. Binary Masks, RLE Byte Encoding and Bounding Boxes:Binary masks are
generated from semantic pixel maps by thresholding the pixel value to boolean 1 or 0
and an instance number is added to each mask instance. In our dataset, each image
has only 1 object class but several instances of that object class. Since the Matterport
camera captures several views of the same location (to build a panorama and the 3D
point cloud), the same object class is captured in several images. This helps provide
an augmentation effect to the images and enlarges our dataset. So, separate image
augmentations were not used to further augment the images. After creating the binary
masks, the instance masks in an image are stacked together and Run Length Encoded
(RLE) as a byte string. Finally, ground truth bounding boxes are generated from
masks using the rectangular co-ordinates surrounding the masks. The areas of the
rectangular bounding boxes are considered areas of the masks for computing IoUs and
overlaps.

3 Architecture search and Challenges

Our goal was to interpret indoor images when viewed by a mobile computer vision scanner
such a robot or an AR device. We, therefore, needed a model that is computationally efficient
to execute and also fast in its state-of-the-art frames per second detection capabilities. Our
search led us to select Mask R-CNN , a step-up model from the faster R-CNN as the suitable
model to investigate.



We also selected the data architecture afforded by the Stanford 2D-3D dataset due to
its high-definition, high augmentation rate, less occlusion, indoor objects, and computation
efficiency. We explored other datasets such as NYU-Depth V2 and Matterport 3D but we
found these datasets to not have the seminal characteristics we were looking for as illustrated
above.

The main challenge in this project came from the need to convert the Stanford 2D-3D
dataset to a masked dataset similar to the ground truth MS-COCO instance masks and
bounding boxes on which the Mask R-CNN (MR-CNN) was originally trained on. Fur-
ther,upon conversion, sparse mask images needed to be weeded out. Since semantic pixels
are not readily connected to annotations, class IDs, labels and such, several JSON files had
to be generated to index and link the pixels to their labels and classes. Generating such link
files and ground truth annotations took considerable amounts of time and code development.
Refer to our github for all code files, outputs, configuration files, visualization codes and a
host of other code and data we generated for this investigation.

The other main challenge was that the dataset has only 12 fore ground classes compared
to over 90 classes for MS-COCO 2017 dataset. Therefore, the Resnet 101 based backbone
Mask R-CNN over fit the dataset. To avoid over fitting, several modifications were made
to the MR-CNN. The key modifications revolved around reducing the size of the network,
adjusting learning rate to much lower than the 0.02 elected in the original paper, and gradient
clipping and L2 regularization (weights decay) to prevent gradient explosion. Details of the
modifications are listed below.

1. Smaller ResNet backbone: we found that incorporating a ResNet 50 gave us fast loss
convergence and prevented bias and variance issues at the same time.

2. We applied a learning rate plateau smoothing as an adaptive learning rate to adjust
to the directions of the loss momentum.

3. We exchanged the ADAM optimizer for a stochastic gradient descent with momentum.
The baseline MR-CNN trained with batch sizes of 32, which we found to be computa-
tionally expensive. Therefore we decided to train with a batch size of 2, which meant
that we did not have to apply batch normalization and could use stochastic gradient
descent as our algorithm.

4. We also reduced the sparse entropy softmax activation nodes down to 13 from the 81
needed for the MS-COCO dataset.

5. Finally, we generated the more accurate synthetic bounding boxes from masks rather
than the ground truth bounding boxes.
4 Dataset and Preparation

We used the Stanford 2D-3D Dataset. The dataset has 70,496 RGB images with corre-
sponding segmentation images coded in Green and Blue channels. The images are 1080X 1080,
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which were padded to 1088X1088 so they are divisible by 32 for ensuring the tensor shapes
remained consistent. The dataset has 6 Areas, 13 object classes, 11 scene categories, and
270 scene layouts. From a shuffled population of 10,000 images from Areas 3 and 5a, we ran-
domly chose 5000 training images, 1000 Dev, and 100 test images. All images, therefore, are
from the same distribution and therefore we did not need to set aside examples for train-dev.
Data is fed via a Keras data generator with batches shuffled for every step in the epoch.

5 Experiments and Evaluation

We took the original Facebook AI Research’s MR-CNN with the full ResNet-101 back-
bone on MS COCO dataset and further fine tuned the backbone to evaluate on the Stanford
2D-3D dataset. Against this baseline, we measured our modified MR-CNN’s performance on
the Stanford 2D-3D dataset. We evaluate our results by research community-standard per-
formance indicators such as mAP (mean average precision), mAR (mean average recall), and
F1 score, per the formula below. mAP, mAR, F1 were computed for various loU thresholds
and then averaged.

F1— score = (2% mAP xmAR)/(mAP + mAR)

We will also evaluate comparison of the 3 MR-CNN losses (Class, Box, Mask) against the
MR-CNN baseline tuned on MS-COCO dataset. The tables below summarize loss perfor-
mance comparison between baseline and our modified MR-CNN versions.

Table 1: Evaluation Metrics Comparison

Model dataset | mAP | mAR | F1 Score
MR-CNN Baseline COCO | 0.03 | 0.53 0.06
Modified MR-CNN Train S2D 0.31 0.73 0.43

Table 2: Loss Performance Comparison

Loss Comparison dataset | MR-CNN Box | MR-CNN Class | MR-CNN Mask
MR-CNN Baseline Train | COCO 0.5817 0.5912 0.5680
MR-CNN Baseline Val CcOCO 0.5869 1.039 0.5583
Modified MR-CNN Train | S2D 0.7574 0.093 0.6964
Modified MR-CNN Val S2D 0.7445 0.1103 0.6925

Our modified MR-CNN delivered a MR-CNN class loss of 0.093 for training and 0.1103 for
validation against the baseline of 0.5912 and 1.039 respectively: a promising 1/6th reduction
in training and 1/10th reduction in validation loss. Our losses are lower as our model
involves training and evaluation on a low occlusion, simpler feature maps, 1 object per image
dataset. Both training and validation losses converge in several hyper parameter tuning runs,



indicating the backbone MR-CNN model’s ready application to transfer learning for indoor
scene understanding tasks. Our results were also superior for mAP measure: we obtain a
mAP of 0.31 for our modified version versus 0.03 for the baseline. Overall, there is a 10X
performance improvement, which demonstrates that MR-CNN can be readily applied to less
occluded, lower classes indoor images as well, a promising result, which can be investigated
further.

Further, our experiment runs showed that progressive learning rate decay coupled with
gradient clipping (clipped at a gradient threshold of +/- 5.0) and reduction in network size
were the key hyper parameters when tuned produced increased performance. Following
these hyper parameters, we found that tuning IoU and non-max suppression thresholds to
be very effective. We believe that further reduction in losses and increase in accuracies can
be achieved by adding another input information channel viz. depth encoding, which could
be the z-axis distance or surface normal vectors.

In summary, a smaller, modified MR-CNN performs well on Class loss and compara-
bly on Mask and Box loss against the baseline. This ability to use a smaller MR-CNN is
computationally very efficient compared to the expensive 3D point cloud based network.
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