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Abstract

Plant identification is a key step in plant biodiversity research and conservation
biology. Speeding up this process can boost our ability to protect the environment
by simplifying species conservation efforts and helping educate the public. In
this study we used a Residual Network (ResNet) to automatically classify 185
tree species from North America based on leaf images. Our results show reduced
computation and higher recognition precision than any existing system.

1 Introduction

Understanding and preserving worldwide biodiversity is central to addressing challenges associated
with resilience to climate change and reducing the impact of greenhouse gases. Amidst growing
threats to biodiversity - such as deforestation, overexploitation, or pollution - species conservation
becomes increasingly important. Plant species identification - a fundamental first step to quantifying
biodiversity - can be challenging for both researchers and the general public. Therefore, the ability to
reliably and easily identify plant species holds great potential to increase knowledge accessibility
as well as facilitate greater collective ability to protect the environment. With this goal in mind we
designed an algorithm that takes as an input an RGB leaf image. We then used a ResNet18 to classify
the image into 1 of 185 classes corresponding to its species 1. The model was tuned for various
hyperparameters to achieve an overall top-1 precision of 93.8% on the dev set. The final model is
hosted on a remote server and allows anyone to use the classifier for free by logging into Google
Hangouts and opening a chat with leafnetstanford @ gmail.com.

2 Related work

There are four main approaches to plant classification: manual identification, image processing,
machine learning, and DNA barcoding. The first is tedious and slow, since it involves searching
for each species in a printed or digital key [11]. Image processing techniques allow for higher
throughput, but rely on hand-crafted algorithms that extract certain features chosen a priori to identify
species [8, 13]. A traditional image processing approach involves: image binarization to separate
background and the leaf, detection of contours and contour corners, and geometrical derivations of
leaf tooth features. Given the extreme diversity of botanical data, it is easy to see that hand-crafted
methods don’t provide a scalable solution. In recent years, barcoding has started to gain some traction,
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Figure 1: Visual summary of the identification system

however, it is an invasive method and it is not applicable to herbarium specimens where DNA quality
has degraded [4]. Finally, to overcome these limitations, model-free approaches and machine learning
methods have been introduced [1, 12].

Some state-of-the-art deep learning examples are: [9] where they report 99.7% precision by using a
ResNet to identify 44 different species; [6] reached a classification mean average precision of 74.2%
and won a classification competition based on the PlantCLEF dataset which consists out of 113,205
pictures of 1000 woody and herbaceous species from France and neighbouring countries. Finally,
[3] used a custom network architecture on the LeafSnap dataset described in the next section and
obtained 86.3 % top-1 precision after 200,000 iterations. We obtained higher performance in less
iterations and with a simpler network.

3 Dataset and Features

For training and testing our model, we used the LeafSnap dataset [8] which contains 224x224 pixel
images and covers 185 tree species from North America (40 to 200 examples of each species). The
dataset is divided into two subsets:

e 23,147 lab images (Fig. 2, left) which are high-quality images of pressed leaves from the
Smithsonian collection with controlled illumination.

o 7719 field images (Fig. 2, right) taken by different users in outdoor environments with their
phones. Field images contain varying amounts of blur, noise, illumination patterns, shadows,
etc. - but the image taking instructions of the LeafSnap project assure that each field image
shows a uniform background (provided by holding a sheet of paper behind each leaf while
taking the picture).

In order to reduce overfitting we enlarged the dataset by using data augmentation. In particular,
we applied random rotations for a final training size of 120,000 images. As seen in 2, this led
to significant improvements in precision. Additionally, the RGB values were normalized using
mean=[0.485, 0.456, 0.406] and std=[0.229, 0.224, 0.225] to standardize the histograms of all three
colors before passing the images into the model. This technique is useful when images are taken
using different cameras or in different lighting conditions. Note that, for the dev set we only used
field images, since we wanted to study the performance of our model under conditions close to those
of a typical user.

Finally, we worked on incorporating geolocation as an additional input feature to help train the
network and make it more robust to visual similarities. In order to do so we divided North America
into 50,176 equal regions using a 224x224 grid. Using a plant database [2], we turned the grid
into a binary matrix containing 1s in the regions where each species is most commonly found. The
input to our system then became 224x224x4. The results corresponding to the four channel input
remain inconclusive and will be part of our future work. Another line of work for the future will be
augmenting the dataset by superimposing the current leafs on non-white backgrounds.



Figure 2: Example of a lab image (left) and field image (right) for the Aesculus Pavi

4 Methods

We tested several models and discovered that according to our evaluation metrics (see next section)
the highest performing network architecture was ResNet18 with stochastic gradient descent (SGD)
and cross-entropy loss.

J(0) = — Z yilog(y;) (1)

In particular, we used an implementation of SGD that uses momentum (aka Nesterov SGD) In SGD
with momentum, the update can be written as:

v=p*xvt+gp=p—Irxv 2)

where p, g, v and p denote the parameters, gradient, velocity, and momentum respectively. Theoreti-
cally, it can be shown that Nesterov gradient descent is faster than stochastic gradient descent because
it anticipates it clips the descent in anticipation of the next descending direction.

We chose a residual network because we wanted to be able to have a deep NN while minimizing
potential issues with vanishing gradients. The main benefit of a deep network is that it can represent
very complex functions and can learn features at many different levels of abstraction. This allows the
network to distinguish between extremely similar species. The main drawback is that during backprop,
you multiply by the weight matrix on each step, and thus the gradient can decrease exponentially
quickly to zero for very large networks.

Having ResNet blocks with "skip connections" makes it very easy for one of the blocks to learn
an identity function. This means that you can stack on additional ResNet blocks with little risk of
harming training set performance. There is also some evidence that the ease of learning an identity
function—even more than skip connections helping with vanishing gradients—accounts for ResNets’
remarkable performance. ResNet18 combines identity and convolutional blocks.

All models were ran on an a 4-core GPU and coded using the following libraries: PyTorch, pandas,
Pillow, pytest, hSpy, sklearn, scipy, scikit-image, scikit-learn, keras [7, 10, 5]

5 Results, Metrics, and Discussions

We experimented with different architectures and tuned our hyperparameters to optimize our perfor-
mance metric. Our goal was to use a sufficiently deep network to be able to learn complex features,
but no deeper than necessary to minimize computation time. In other words, our optimizing metric
was top-1 precision and our satisfycing metric having a model smaller than 100 Mb.
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Figure 3: Precision and loss function curves for the highest performing model (dev prec-1 93.8%)

Hyperparameter Value

Input RGB image (224x224x3)

# of classes 185

# of epochs stuffed

# hidden layers stuffed

Mini batch size 128

Optimizer Stochastic (Ir = «, $1=0.9, weight_decay=1e-4, Nesterov momentum)
Learning rate, o 0.1

Learning rate decay rule o = ag X 0.1 where k=6
FC layer input size 512

Table 1: Hyperparameter details for our highest performing model

where (1) m is the number of example-label pairs (x;, ¥;), (2) 5 = 1, ..., n the highest ranked species
predictions according to their probability value, and (3) I is an indicator function that returns 1 when
there is a match and O otherwise.

In summary our metric was: maximize precision while (if possible) reducing computation

Overall, we found that learning rate decay had the biggest effect on speeding up the convergence
of the algorithm. Fast convergence was the key that enabled us to iterate quickly through different
models and hyperparameter values. Precision benefited the most from data augmentation (rotation
by 90 degrees) since it expanded the training size and also allowed the model to learn on rotation
invariant properties of the leaf such as color, shape, and texture rather the orientation.

For our highest performing model (see table.1), we achieved an average top-1 precision of 93.8% and
an average top-5 precision of 99.5%. We studied outliers to look for trends and improve precision.
Fig. 4 shows the ten species that are responsible for the largest percentage of mispredictions.



Table 2: Parameters and performance of models used during the architecture search

Model Batch Size  Optimizer Input Size Lr. decay? epochs top-1 prec(%)
Logistic Reg. 256 Vanilla GD 224 Yes 35 10.4
ResNet18 128 SGD 16 Yes 35 60.5
ResNet18 128 SGD 224 No 35 11.5
ResNet18 128 SGD 224 Yes 35 85.7
ResNet18 128 Adam 224 Yes 35 41.1
ResNet18 128 SGD 224 Yes 35 93.8
ResNet50 64 SGD 224 Yes 78 85.4
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Figure 4: Family of species responsible for the errors

By looking at their corresponding images we were able to see that outliers can mostly be explained
by: (1) species that show strong visual similarities or (2) species that are represented in the LeafSnap
dataset by only a few images (making training of such species difficult). Using data augmentation
mitigated the latter problem and we hope that improving geolocation will give the algorithm a new
metric to distinguish leaves which despite looking almost identical may be more prevalent in entirely
different locations.

The final model after all hyperparameter training was hosted on an AWS server and incorporated
into a bot on Google Hangouts to allow any curious user to benefit from the work of Leafnet. At the
moment, the leaf image must be taken on a white background because our model was only trained on
such images. The product can be used by opening a chat window with leafnetstanford @ gmail.com
and saying "Hi bot" and sending a picture of any tree leaf on a white background.

6 Conclusion/Future Work

In the future it would be very interesting to use a deconvolution network to visualize the learned
features. Botanists could then inspect the results and verify that the network is indeed making
predictions using sensible information. Additionally, as mentioned in section 3, we would like to
train our model using leaf images with non-white backgrounds and improve the geolocation feature
in order to find out what its real impact on precision is.

Overall, the results of our ResNet model show that deep learning approaches offer a high-precision,
high-throughput, non-invasive, solution for specimen classification. More specifically, ResNet18 with
SGD and learning rate decay outperforms all other methods in terms of top-1 precision while using a
relatively small number of layers and requiring less epochs to converge than other models.



7 Contributions

E.G. worked on code implementation, poster, and write-up; K.R. worked on code, error analysis, and
google bot for the poster and write-up; Z.P. worked on the code implementation of the geolocation
feature and helped with the poster.
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