Modern DL Algorithms to Systematically Trade a
Hedged Portfolio of U.S. Equities

Kevin M. Lalande*
Department of Computer Science
Stanford University
klalande@stanford.edu

Abstract

Use a hybrid DNN-LSTM architecture to predict stock price behavior over the
forward 6-week period into 1 of 5 categories for every ticker listed on the NYSE
and Nasdaq stock exchanges using a rich set of 4,525 features per ticker, per month.
A 22-35% advantage over random guessing is achieved over a 12-year period.

1 Background

Santé Capital (“SC”) manages a Long/Short Equity hedge fund using a systematic machine-learning
quantitative trading strategy called MindRank to identify mis-priced securities. The performance
of SC’s algorithms is evaluated with a carefully reconstructed hypothetical track record (“RTR”)
that spans 155 consecutive months from January 2004 to December 2016. The RTR significantly
outperforms equity index benchmarks like the S&P500 over the period with an annualized net return
of 22.8%, an annualized monthly volatility of 11.9%, and a Sharpe ratio of 1.90 after fees and
expenses versus 7.2%, 13.8% and 0.43, respectively.

SC’s current software system, MindRank Gen3.5, is comprised of four components: 1) dataset
generator, 2) predictive algorithms, 3) portfolio design and risk management parameters, and 4)
trade execution model. The objective of this project is to upgrade SC’s predictive algorithms, which
were originally implemented in MATLAB circa 2014-2015, to the latest Deep and Recurrent Neural
Network architectures ("DNN", "RNN" and together Deep Learning or "DL") using Python and the
TensorFlow[1] and Keras[3] DL frameworks. The other three MindRank components — datasets,
portfolio parameters, and trade model — are left untouched in order to produce an valid A/B test of
the new predictive algorithms versus a baseline of the current Gen3.5 commercial algorithms.

2 Introduction

MindRank attempts a challenging application: to predict stock price behavior over the forward 6-week
period into 1 of 5 categories for every ticker listed on the NYSE and Nasdaq stock exchanges using a
rich set of 4,525 features per ticker, per month from a curated dataset with fifteen years of historically
accurate data. We exclude tickers with a market capitalization of less than $200 million because
these stocks are often too thinly traded to enter and exit large enough Long/Short positions to be
commercially relevant. That leaves about 2,500 tickers per month with the exact number fluctuating
from one month to the next based on IPO, M&A and delisting activity.

The X input to this algorithm is an (m,n) array of m= 2,500 tickers by n=4,525 features on a given
"as-of" date when all of the features reflect the latest publicly available information as of midnight

*Managing Director, Santé Ventures and Santé Capital. Email: kevin.lalande @santeventures.com

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

that day and contain no forward-looking information. Each ticker row represents a single training
example. Inputs are presented to the model one month at a time over the 155 months from 200401 to
201612 in order to generate predictions for the following month. The output Y of this algorithm is an
(m,1) array of categorical Class 1-5 predictions for each of the m= 2,500 tickers in a given month
time period.

Figure 1: Class Labeling Scheme

Five Stock Classes

Based on Percent Change in Price
Over Next 6 Weeks without Going >
#% in the Opposite Direction

Risk Management Thresholds
Stoploss and LockGain Settings Define Class 1-5 Stocks
Examples of Class 2 and Class 5 Stock Prices

%A $/sh by TradeDay

%AS$/sh

> +10%
0to +10%

0to-10%

StopLoss Long

>-10%

LockGain Short

To train the model, ground truth Y labels € N{1, ..., 5} are supplied based on how each stock price
actually behaved over the subsequent 6-week period. The labeling scheme shown in Figure 1 maps
tickers into one of five mutually exclusive and collectively exhaustive Class categories. Class 5 tickers,
which are candidates for the Long portfolio, increase as a percentage of the closing price on the as-of
date by more than a LockGain-Long threshold (e.g., 15%) at any point over the subsequent 6 weeks
without first decreasing by more than a StopLoss-Long threshold (e.g., 10%). Class 2 tickers, which
are candidates for the Short portfolio, decrease in price by more than a LockGain-Short threshold
without first increasing by more than a StopLoss-Short threshold.

Class 4 and 3 tickers are intermediate cases in which the expected value of the increase or decrease
relative to starting price is not high enough to justify the risk of buying or selling short the security.
Class 1 is a reserved category for tickers that have failed one or more of the quality control tests
designed to ensure feature set accuracy and are not considered.

Three specific challenges make this an interesting prediction problem, each of which will be discussed
later in the paper:

1. There is no clear proxy for Bayes’ error given the way this classification problem is framed
and, in a related complication, financial time series price-volume data are noisy.

2. The classification itself is more difficult than simply predicting whether a stock or index
price will next move up or down. The models must predict whether a stock will, at any time
point over a fixed forward period, move in one direction by more than a certain LockGain
threshold without first moving in the opposite direction by more than a certain StopLoss
threshold. These additional constraints are necessary to systematically trade the predicted
tickers.

3. The prior probabilities for each Class vary widely from one month to the next. For example,
the Class 2 incidence rate averages 29% of total tickers over the entire 155 month recon-
struction period, but has a standard deviation of 19% in any given month. This makes it
difficult for a DNN alone to backpropogate useful gradient updates from one time period
to another, and is the primary motivation for the hybrid LSTM — DNN architecture tested
herein.

3 Related work

Much of the published research on applying DL techniques in financial market applications is based
on attempt to predict forward changes in one-to-a few stock market indexes or stock tickers using

time series price-volume data (open, close, high, low, volume) and a set of 10s-to-100s of easily
obtainable technical analysis features like MACD, RSI, Stochastic, Bollinger Bands, etc. Perhaps
unsurprisingly, many of these approaches are unable to produce a meaningful or durable advantage
over random guessing, particularly after taking into account real-world transaction fees and fund
management expenses. I think this is probably due to the use of data sets that lack a sufficiently
rich feature set to to provide the predictive models enough of a representation of the underlying
phenomena.

That said, several papers make insightful contributions on various pre-processing techniques and
network architectures, even if on limited datasets. For example, Wei Bao combines discrete wavelet
transforms, stacked autoencoders, and LSTM RNNS to predict several stock indexes.[2] And M’ng
combines wavelet transforms with principle component analysis to forecast Asian stock indices.[4].

4 Dataset and Features

SC crawls 10 million URLSs to ingest about 1,000 Gb of unstructured text data every day. Various
natural language processing techniques are used to extract a proprietary set of features which are then
combined with commercially available structured data from several different providers to create a
dataset containing 4,525 features for each of the 2,500 publicly traded company on the NYSE and
Nasdaq with a market cap greater than $200M in each of the 155 monthly periods from 200401 to
201612. Considerable attention has been paid to quality control systems to ensure that each feature is
accurately registered in time to each ticker — that is to say, the right data point at the right time for the
right company — and to correct for survivor bias in the commercially purchased datasets.

4.1 Features

The feature set includes macroeconomic indicators, fundamental metrics, technical metrics, investor
sentiment, and price-volume data for multiple stock indexes and each of the included company tickers.
Feature reporting frequencies vary depending on availability and are either single, daily, weekly,
monthly, quarterly, annually. Multi-period features appear in consecutive columns. Figure 2 below
shows a few specific examples from the feature set.

Figure 2: Example Features in Dataset

News & i T i Stock Index
Consumer Price Index Total Revenues Press Release A/D Oscillator Price Open S&P 500
Durable Goods Orders Unlevered Free Cash Flow Earnings Call Commodity Channel Index Price Close Russell 2000
Employment Accounts Payable Aggregate Event Sentiment Larry William's (R%) Price High Nasdaq Composit
Existing Home Sales Accounts Receivable Aggregate Event Volume MACD Price Low VIX
Fed Press Conference Asset Turnover Abnormal Sentiment Momentum Volume Goldman Commodities Index
FOMC Forecasts Capital Expenditure Editorials ROC Price-rate-of-change VWAP Credit Suisse High Yield Il Index
FOMC Minutes Cash and Equivalents News Volume RSI Market Cap Citigroup World Govt Bond Index
GDP Cash per Share Event Novelty Simple MA 10-day Enterprise Value Dow Jones World Index

Producer Price Index ISS Governance QuickScore Earnings Evaluations Stochastic (K%, D%, slow) Dividend Dow Jones World Emerging Index

One question considered is whether all of these features are necessary. This is difficult to answer
exhaustively given the large number of permutations required to test. However, previous testing
has demonstrated that: a) performance improved as features increased from 1,700 to 4,500 so
long as regularization techniques were employed, and b) the Top 100 most important features vary
significantly from one month to another and in different market environments but the set intersection
is 3x higher than would be expected in random chance selection.

4.2 Normalization

All input features are normalized to zero mean and unit variance before training in order to make the
contours of the cost function more equally spaced and therefore easier to optimize.

5 XWX I (-Py 1 & _
o _ 2~ X = = ©) = = _
Xn'" = Sx ,where : X = m;X andSx = m;(X X)2

4.3 Wavelet Transform

Price and volume data are denoised using a discrete Wavelet transform. Wavelet transform is an
increasingly widespread technique to manage non-stationary financial time series data because it
can analyze both frequency and time components simultaneously and is computationally efficient to
calculate. [2][4]

Decomposing time series into an orthogonal set of components results in a discrete wavelet transform
with father wavelets, ¢(t) and mother wavelets, ¢ (t), which integrate to 1 and 0, respectively.
Financial time series can be reconstructed with a sum of projections on the mother and father
wavelets indexed by k € {0,1,2,...} and by j € {0,1,2,..., J} where J denotes the number of
multi-resolution scales. The brief form of orthogonal wavelet series approximation can be written as:

z(t) = S;(t) + Dy(t) + Dy1(t) +--- + Da(t)

where S (t) is the coarsest approximation of the input time series x(t). The multi-resolution decom-
position of x(t) is the sequence of coefficients {S;(t) + D ;(t) + Dy_1(t) + - - - + D1 (¢) }[2], which
is input to the predictive models below.

4.4 Train/Dev/Test Splits

For the two DNNS, predictions and training updates are made each month based on the subsequent
and previous YearMonth’s dataset, respectively. Each month has an m= 2,500 tickers which are
randomly shuffled and split 90/10 into Train and Deyv sets with a batch size of 128. Batch size was
selected empirically after testing {1,32,64,128,256 and All}. Over the entire 155 month period, there
are 406,950 total examples. The Test set is month ahead prediction.

For the LSTM, data is daily with a batch size of 1 and without shuffling and is pre-trained on m=1,000
prior days split 90/10 Train/Deyv set. Batch size was selected to accommodate a day-by-day RNN
with seven timesteps (Tx=7) without introducing forward-looking information. The Test set is the
day ahead prediction.

4.5 Label Distribution

For the entire 155 month period, Class 1-5 distribution is 8%, 29%, 17%, 24% and 22%, respectively.
However, the incidence rate of any given class varies widely from one month to the next. For example,
the Class 2 incidence rate is ;1 = 29% and 0 = 19%. Label data is also pre-processed to support the
two binary classification DNNs trained below, one for Class 2 or Not Class 2 and the other for Class
5 or Not Class 5.

5 Methods

Three separate models were developed to work together to produce an integrated set of predictions
for each of the 155 months. Because the Class 1-5 probabilities vary widely from one month to the
next, DNNs have difficulty learning useful gradient updates in a period which has, for example, a
much lower Class 2 incidence rate than usual. Uncorrected, the number of Class 2 predictions will
"tumble" in the subsequent month to near zero as the DNN overreacts to the most recent data. To
help address this, I trained a LSTM to predict forward period Rolling Class 2 Arrival Rates and use
those predictions to adjust the expected class weights for the DNN each month.

5.1 DNNs

Input X described above is fed into a two different DNNs each with 8 fully-connected layers shown
in Figure 3. The first layer has 2048 hidden units, followed by 3 layers with 1024 hidden units each,
followed by another 3 layers with 512 hidden units each, followed by an Output layer with 1 hidden
unit.

The Output layer uses a Sigmoid activation function to predict a binary classification problem (Class
2 or not) or (Class 5 or not).

Figure 3: Three Predictive Models Trained

One 3-Layer LSTM Yhat <Tx> Two 8-Layer DNNs
i Yhat (m,1)
— =
[.
T & T X (m,n)
= > > —> —>
= .
i = i
.—’ __ __
BN BN
Xavier Xavier Xavier Xavier
X<1> X<2>, X<...>, X<Tx> Relu Relu Relu Sigmoid

Dropout Dropout Dropout

Each of the layers uses Xavier weight matrix initialization and batch normalization to help control
for vanishing and exploding gradients as the network gets deeper. All layers except the Output use a
ReLU activation function and Dropout regularization with a keep probability increasing from 50% to
85% from shallow to deeper layers.

Binary cross-entropy was selected as the Loss function to measure the dissimilarity between the true
probability and predicted probability by the following equation:

L(9,y) = —(ylog(y) + (1 — y)log(1 — 7))

Stochastic gradient descent with momentum was selected as the optimizer with learning rate a=0.05
and $=0.9. ADAM and RMSprop were also considered.

Hyperparameters were tuned using a log-scale search for a and /3 and a design of experiments for
the number of hidden units {256, 512, 1024, 2048, 4096}, mini-batch size {1,32,64,128,256 and
All}, number of layers {1...10}, and number of training epochs {1, 2, 5, 10, 20, 40, 80}. In selecting
the Best Model architecture, I took into account F1, number of months with fewer than 50 Class 2
predictions and amount of compute time required to train the model.

5.2 LSTM

A three-layer LSTM network with 7}, = 7 time steps was trained to predict the Rolling Class 2
Arrival Rate 5-Day average.

The input X<t> was the Discrete Wavelet Transform for the time series of prior 90-days for
{Class2Percent, Class5Percent, RC2ARS5, Russell2000_Close, SP500_Close, VIX_Close} which has
a shape (timesteps=7, data_dim=540).

A Sigmoid activation was selected for the Output layer because the predicted variable RC2ARS is a
percentage value that is always between 0 and 1.

Mean Squared Error was selected as the Loss function to measure the distance between the true and
predicted value of RC2ARS5. RMSprop was selected as the optimizer with a learning rate o = 0.001.
ADAM and SGD were also considered.

6 Experiments/Results/Discussion

Figure 4 shows summary results for Best Model Classifier Performance of this new hybrid DNN-
LSTM architecture versus baseline commercial MindRank Gen3_5 algorithms.

I use Advantage over random guessing as the key performance metric because of the Class imbalance
and the practical difference in false positive (likely lose money) versus false negative (lose oppor-
tunity). Precision, Recall and F1 are all measured and considered along with IRR, Volatility (risk)
and Sharpe Ratio (quality) that are produced by running the classifier predictions through the RTR to
calculate financial impact.

The new architecture was able to achieve a substantial advantage over random guessing for both
Class 2 (34.7%) and Class 5 (22.3%) tickers. The model appears to be training and generalizing
well, with a Train accuracy of 81%, Dev of 70% and Test of 62%. It is difficult to know exactly how
much of the Train error is Avoidable Bias because no clear proxy for Bayes’ error exists for this
problem as framed. Some of the fall off from Train to Deyv is the result of over-fitting the training
data. And at least some of the fall off from Dev to Test is the result of the class probabilities shifting
in a subsequent month in response to a changing market environment.

During development testing, higher performance was achieved with binary classification than with a
5-way Softmax. Advantage over random guessing (discussed below) was 37% vs. 28%. This was
an unexpected result as I thought the MECE nature of the class labeling scheme would help the
model learn from multiple tasks. But the binary network design clearly performs better, so I train
two separate DNNSs to predict Class 2 vs. Not Class 2 and Class 5 vs. Not Class 5, and then take the
union less the intersection of the two sets to create the final list of predictions.

Figure 4: Classifier Performance - Best Model

CS230 Project MindRank 3_5
Class2 Class 5 Class2 Class 5
YearMonths 155 155 155 155

Actual 115,826 120,532 118,718 122,582
Predicted 158,506 159,610 139,532 118,995

True Positive 60,766 57,815 58,613 46,989
Precision 38.3% 36.2% 42.0% 39.5%
Recall 52.5% 48.0% 49.4% 38.3%
F 0.443 0.413 0.454 0.389
Incidence 285% 29.6% 284% 29.3%
Advantage 34.7% 22.3% 47.9% 34.7%
Train 80.8% 78.6% na na
Dev 69.5% 66.5% na na
Test 62.3% 59.3% na na

IRR 19.3% 23.2%

Volatility 9.9% 10.9%

Sharpe Ratio 1.25 1.43

7 Conclusion/Future Work

Summarize your report and reiterate key points. Which algorithms were the highestperforming? Why
do you think that some algorithms worked better than others? For future work, if you had more time,
more team members, or more computational resources, what would you explore?

References

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaogiang Zheng. Tensorflow: A system for large-
scale machine learning. In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation, OSDI’ 16, pages 265-283, Berkeley, CA, USA, 2016. USENIX
Association.

[2] Wei Bao, Jun Yue, and Yulei Rao. A deep learning framework for financial time series using
stacked autoencoders and long-short term memory. PloS one, 12(7):¢0180944, 2017.

[3] Frangois Chollet et al. Keras. https://keras.io, 2015.

[4] Jacinta Chan Phooi M’ng and Mohammadali Mehralizadeh. Forecasting east asian indices futures
via a novel hybrid of wavelet-pca denoising and artificial neural network models. PloS one,
11(6):e0156338, 2016.

[1] Alexander, J.A. & Mozer, M.C. (1995) Template-based algorithms for connectionist rule extraction. In
G. Tesauro, D.S. Touretzky and T.K. Leen (eds.), Advances in Neural Information Processing Systems 7, pp.
609-616. Cambridge, MA: MIT Press.

[2] Bower, J.M. & Beeman, D. (1995) The Book of GENESIS: Exploring Realistic Neural Models with the
GEneral NEural SImulation System. New York: TELOS/Springer—Verlag.

[3] Hasselmo, M.E., Schnell, E. & Barkai, E. (1995) Dynamics of learning and recall at excitatory recurrent
synapses and cholinergic modulation in rat hippocampal region CA3. Journal of Neuroscience 15(7):5249-5262.

