A Deep Learning Approach to Player Forecast
Systems

Elliott Chartock™
Department of Computer Science
Stanford University
elboy@stanford.edu

1 Introduction

In this project we build a player forecast system that predicts season performance statistics for
professional baseball players. Such forecast systems are pivotal for the success of the billion dollar
fantasy sports industry. Additionally, there are practical applications to building highly accurate player
prediction models. In the current Moneyball age of baseball, sabermetrics often guide management
decisions to draft, trade, or drop players on their roster. Baseball managers around the world deserve
better player forecast systems, be it a 14-year-old kid picking his first ever fantasy roster, or Theo
Epstein devising his next World Series winning roster of star-studded, undervalued athletes.

Player predictions are made via a fully-connected neural network (FCNN) and a recurrent neural
network (RNN). The input to the FCNN is a concatenation of previous player-season statistics.
The input to the RNN is previous player-season statistics inputted as a time-series. For all models,
we predict the number of home runs in the next season. Home runs is chosen as the prediction
task because is is an easy-to-understand metric that has positive correlation with a team’s winning
percentage [1] and also has a high point value in fantasy sports. Making accurate predictions on the
number of home runs in the next season is good proof of concept for being able to apply these models
to make accurate player predictions over other statistics in future seasons.

2 Related work

Despite its data rich and statistics obsessed culture, baseball still has a large contingency that is
adverse to statistical methods that aren’t entirely intuitive or human-interpretable. For this reason,
baseball is a field with exhaustive data records that remains heretofore absent of deep learning
influence. Early data driven forecast systems attempted to map a player to one of 13 preset career
paths, then applied an algorithm to "walk" the player down his given path, resulting in predictions
for the upcoming season [2]. In 2006, Nate Silver introduced PECOTA, which is currently still the
leading forecast system used by Baseball Prospectus to make fantasy sports predictions. PECOTA
extends the idea of [2] to go from 13 preset career paths to an infinite number of career paths. The
PECOTA algorithm makes player season predictions based on a weighted sum of all similar previous
player seasons throughout baseball’s 150 year history.

This project applies deep networks (fully connected network and recurrent neural network) by directly
predicting the target stat in an attempt to outperform PECOTA’s predictions. It should be noted that
PECOTA projections are proprietary and the authors have not purchased access to such data. For this
project all models will be compared to a common baseline. Comparison to industry projections will
occur in future work.

*Thanks to Abhijeet Shanoi for guidance as project mentor.
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3 Dataset and Features

3.1 The Lahman Database

In 1994, Sean Lahman began an initiative to make baseball statistics exhaustive and freely available
to the public. The current state of the Lahman Database has over 20 tables containing statistics on
hitting, batting, pitching, fielding, managers, and more. We use the Batting table for this project,
which has seasonal hitting data for all Major League Baseball players between 1871 and 2016 [3].
Each row is a vector corresponding to a player’s batting statistics for a given season, which can be
identified by the key pair (playerID, yearID). The input features are comprised of common natural
numbered baseball statistics, such as games played, at bats, and home runs. Figure 1 contains all 17
features used for training and shows an example of a row for a given player along with the label we
are trying to predict.

playeriD yearlD G AB R H 28 38 HR RBI SB cs BB SO BB HBP SH SF GIDP

Input ortizda01 2015 146 528 73 144 37 0 37 108 0 1 77 95 16 0 0 9 16

Predict ortizda01 2016

Figure 1: Sample feature vector containing statistics for David Ortiz’s 2015 season.

3.2 Preprocessing

The Lahman Database contains 102,816 distinct player-season pairs. First, we omit all inputs with
missing data, leaving 66,175 player-seasons. We further filter by ignoring all player seasons in which
the player does not reach a threshold number of at bats. [4] found that 100 at bats yields good results.
The purpose of such a threshold is twofold. Firstly, a player with a greater number of at bats is more
representative of the types of players we want to make predictions on: low usage players are not
frequently drafted in fantasy baseball. Secondly, baseball statistics naturally have a large variance and
with so few at bats, a player season would offer more noise than signal. After at bat filtering there are
21,981 player-seasons. Lastly, we omit all rows that do not contain a valid label, which corresponds
to seasons in which the player did not have over 100 at bats in the next season (caused by injury or
retirement, often). After all data cleaning and preprocessing, there are 17,130 valid player seasons.
We employ a 80-10-10 split of the data into training, development, and test sets.

Train Dev Test

No. Player-Seasons | 13,704 | 1,713 | 1,713
Table 1: Train, development, and test set sizes.

4 Methods

4.1 Mean Last-K Baseline

The baseline for this model is a simplification of the Marcel the Monkey projection system [5]. To
predict next year’s player performance we simply average the previous K years numbers for that
category. More precisely, for predicting target label "HR’ of player vector p in year ¢ for K = k, we
calculate:

t—1

i=t—k—1

p[HR] =

> =

For the Mean Last-K baseline, we test K = 1, 2, 3, 4, 5. While a very naive baseline, Marcel has been
observed to outperform state-of-the-art projection systems in some seasons [6]. We hope to improve
upon these results with deep learning models.



X201

o o
w @ @ e aI—I—L
Xa013 E‘> H E> H I:‘J> . h? ,—.‘—g——$_ .
(O] Y2015 = 39 HR

X014 @ O hy! QLL—L*

h, =200 h, =200

V2015= 39 HR

S8 & A o

Figure 2: Fully Connected Last-K architecture for Figure 3: RNN architecture
K=4

4.2 Last-K Fully Connected Neural Network

In this model, we pass player data through a fully connected neural network to directly predict the
number of home runs the player will hit in the following season. The input to Last-K FCNN is
a concatenation of the statistics of the last K seasons for the given player. If the player did not
play in K seasons yet, we interpolate the closest year’s statistics as that season’s statistics. K is a
hyperparameter that we tune in Section 5.2. Figure 2 shows the basic architecture for this model,
which is discussed in greater detail in Section 5.2.

4.3 Recurrent Neural Network

Given a sequence of vectors 1, ..., zT, a Vanilla RNN with L layers computes, at a single timestep ¢
and layer [,

hl = tanh(W}, bl | + Wi, z)
yi = Wiy hi

where hé is a hidden vector of dimension H at the tth timestep and layer [, and Wp;,, W, are
parameters to the model. If we want to make a prediction on a player’s statistics for year T + 1, we
the input to the model will be season feature vectors 1, ..., £, where x; corresponds to the first year
that player appeared in the MLB. Here all vectors y. are ignored except for y%

The idea behind this method is that there are frequent temporal patterns that guide a players career
trajectory. If we can learn these patterns we should be able to accurately project the next season of a
player based on his performance in the previous few seasons.

4.4 Loss and Evaluation

The loss function for the models is the mean squared error, which measures the average of the squared
difference between our predictions and the ground truth values.

n

MSE(,9) = + (i — i)’

=1

We evaluate our models using the coefficient of determination R?, a standard statistical measure of
what proportion of the variance in our predictions can be explained by variance in our input features.
With truth values y;, predicted values ;, and mean of truth values § = % > i, this is calculated
as
52
R2—1_ >i(yi — 9i)
= — T g
2w —9)

The best possible R? value is 1.0 (indicating perfect explanation of predictions by input features),
and smaller or negative values indicate worse model performance.



S Experiments and Results

5.1 Baseline Experiments

The Mean Last-K baseline algorithm is run for K = 1, 2, 3, 4, 5 on the the development set to
determine the best value of K to use against the hidden test data. Table 2 shows that K = 2 yields the
largest R2.

K 1 2 3 4 5
R? | 0453 | 0.526 | 0.516 | 0.503 | 0.492
Table 2: Development set R? for baseline.

5.2 Last-K FCNN Experiments

For all experiments, batch normalization, dropout (p = 0.2), and ReL.U non-linearity is applied to the
data at each layer. Emperical results show that this combination of data manipulations yielded the
best results. We perform parameter optimization using Adam optimizer and train all models for 50
epochs.

We perform architecture search and hyperparameter optimization to choose the best Last-K FCNN
model. The following hyperparameters are tested: the number of layers in the network (L), the
number of hidden units in each layer (h), the learning rate for Adam optimizer (Ir), and the number of
previous years’ input vectors to concatenate and feed into our model (K). Experiments on weight
decay for Adam optimizer had negligible effects on the model. For each experiment, we isolate the
hyperparameter being tuned, keeping all other hyperparameters constant. It should be noted that for
L = 0 we are simply running linear regression. Table 3 shows the 2 on the development set for each
hyperparameter experiment.

L 0 1 2 3 4 5 -
RZforL | 0.569 | 0.584 | 0.591 | 0.589 | 0.588 | 0.589 -

h 50 100 200 500 - - -
R2forh | 0.589 | 0.588 | 0.592 | 0.591 - - -

Ir 5e-3 le-3 | Se-4 | le-4 | 5e-5 le-5 | 5e-6
RZforlr | 0.589 | 0.591 | 0.588 | 0.591 | 0.589 | 0.566 | 0.294

K 1 2 3 4 5 - -
R2forK | 0.566 | 0.588 | 0.591 | 0.584 | 0.593 - -

Table 3: Development set R? for Last-K FCNN hyperparameters.
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Figure 4: a) Loss over epochs for Last-K FCNN b) R? over epochs for Last-K FCNN
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The best model concatenates the previous 5 years’ statistics, uses Adam learning rate of le-4 and has
2 layers that contain 200 hidden units each. Figure 4 graphs loss and R? over epoch for training and
validation data. The results of this model on the test set are in Section 5.4.

5.3 RNN Experiments

We use the vanilla RNN implementation as described in Section 4.3. The loss function MSE is only
applied to the final timestep prediction. The following hyperparameters are tested: the number of
layers in the network (L), the number of hidden units in each layer (h), the learning rate for Adam
optimizer (Ir). We also test two training implementations, one where all previous seasons are inputted
as a time series, and another where a random subsequence of the most recent K years are inputted to
the RNN. Table 4 shows the R on the development set for each hyperparameter search.

L 1 2 3
RZ for L 0.562 | 0.582 | 0.575
h 20 50 100
RZ forh 0.520 | 0.575 | 0.580
Ir Se-4 | le-4 5e-5
RZ forIr 0.520 | 0.562 | 0.4533
Random subsequence | True | False -
R2 0.584 | 0.579 -

Table 4: Development set R? for RNN hyperparameters.

The best model stacks two RNN layers with 100 hidden units at each timestep, uses learning rate of
le-4 for Adam optimizer, and inputs a random subsequence of a players previous statistics during the
training process.

5.4 Best Models Results and Discussion

Table 5 shows the results of the best models from Sections 5.1, 5.2, and 5.3 evaluated on the hidden
test data.

Train Loss | Train R? | Dev Loss | Dev R? | Test Loss | Test R?
Baseline - 0.584 - 0.526 - 0.489
Last-K FCNN 1.402 0.547 1.232 0.592 1.334 0.566
RNN 1.420 0.541 1.248 0.584 1.238 0.561

Table 5: Test set results for best baseline, FCNN, and RNN models.

We can see that the best Last-K FCNN slightly outperforms the best RNN model with a test R? of
0.566. Error analysis on the test set shows that for both implementations, the two worst predictions
occur on breakout seasons. For George Foster’s 52 home run season in 1977 (he had 29 home runs
the year before) the Last-K FCNN predicts that he will hit 23 homeruns. Similarly, in Kirby Puckett’s
third year in the majors he jumped from 4 home runs to 31 home runs, while our model predicts that
he will only hit 3 home runs. Both top models, outperform the baseline significantly, though struggle
to predict outliers or identify breakout seasons. In Figure 5 it is clear that the model does not predict
seasons with many home runs well, which lowers the R? score.

6 Conclusion

Our top deep implementations of a player projection system outperform a common baseball baseline
by R? of 0.08. The Last-K FCNN and RNN models perform similarly, which shows that career
projections are not easier to predict when considering the career of a player as a time-series versus
looking at their past statistics holistically. While both neural network implementations perform well
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Figure 5: Home run ground truth vs. predictions for Last-K FCNN

on a hidden test set (R? = 0.566), the models do not perform well at predicting break out seasons,
which would be a favorable trait of a good projection system.

6.1 Weighted Sum of RNN-Learned Player Embeddings

With six more months to work on this project, we would test a player projection system that combines
our work with the methods in [2]. We would extend our RNN implementation by making predictions
based on similarity of a player’s learned embedding. Such a method is used heavily in NLP, in which
it is common to apply a dimensionality reduction technique to an occurrence matrix and then compare
vector similarity at a lower dimension [7]. In NLP these mapped embeddings have a learned semantic
meaning that can be human-interpreted through applying a distance function, such as cosine similarity,
to the embedding of a pair of words. In this setting, we would use h% as a player embedding that
might carry some sort of player semantics learned from the player’s career stats. By using a distance
function, the hope is that we would be able to better compare two players than PECOTA does by just
comparing their raw statistics.

7 Contributions

Not applicable - I am the only contributor to this project.
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