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Abstract

Aging is a big problem in many countries around the world. Right now, 1.3 million
people in the US live in senior care facilities. However, the services and manpower
at senior homes are usually not enough to support the seniors’ daily lives. In
this paper, we first collected a real-world action recognition dataset consisting of
privacy-preserving depth and thermal signals. Then, we introduce a vision-based
monitoring system that classifies daily activities of seniors, which helps facilities
to monitor the seniors’ daily lives and improve the well-being of seniors.

1 Introduction

Nowadays, the increase of senior population is a worldwide problem that is waiting to be solved and
is actually closely related to our life. To improve the living quality of seniors living alone at home or
in senior care facilities, we aim to create a vision-based system to monitor seniors’ daily behavior.
In our paper, we gather our own dataset by installing depth and thermal sensors at senior homes,
annotate the collected video clips for specific actions and apply convolutional networks for action
recognition.

Our work can break into several parts. First, install sensors at senior homes to collect then annotate
data. Next, train DenseNet [1] models to perform action recognition on our dataset. Finally, evaluate
the performance of each modality and the combination of two modalities, then analyze the advantages
and disadvantages of each modality and see if they provide complementary information.

2 Related work

Action classification for RGB images has been studied by a lot of researchers for many years. Tran et
al. [3] proposed a 3-dimensional convolutional network (C3D) that add on an extra time dimension
to preserve the temporal information of the input signals. Donahue et al. [4] trained an LSTM layer
on top of CNN, where the RNN structure is able to capture the temporal information. The success
in RGB video understanding also leads to a series of studies on action recognition with different
modalities [5, 6, 7].

3 Dataset and Features

Depth modality. Pixel values in a depth image represent the calibrated distance between the
corresponding object and the depth sensor. Comparing with RGB images, depth images have several
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Figure 1: Left: depth image. Right: thermal image.

advantages: work in any lighting conditions, color and texture invariant, can capture the 3D structures
of the scene. We use ASUS Xtion PRO as our depth sensors. It records depth images at 240x320
resolution and 30 fps.

Thermal modality. Pixel values in a thermal image represent the temperature of the corresponding
object. Similar to depth images, thermal images do not suffer from low light conditions and are also
color invariant. We use FLIR Lepton 3 as our thermal sensors. It records thermal images at 160x120
resolution and 8.8 fps.

Camera alignment. The depth and thermal cameras have different frame rates, so the first step is to
align them temporally. All the frames are recorded with timestamps, and thus we alignment them
by using nearest neighbor matching. For spatial alignment, since the depth and thermal sensors are
installed close to each other, they have roughly the same view. Also, our algorithm does not require
two camera to be spatially aligned, so it is unnecessary for us to calibrate the images.

Annotation. We annotated 7 days of data, which includes a total of 1239 clips and 106662 frames
with both depth and thermal modality. We focus on 4 fundamental activities [2]: sleeping, sitting,
standing, and walking. All other actions are categorized into the background class. The background
class contains a wide variety of videos, including the senior using toilet or changing clothes, anyone
other than the senior (e.g. a housekeeper), multiple people in the room (e.g. a caregiver assisting the
senior) and empty room.

Train and test split. We split the dataset by date: the first 4 days and the 6th day as training set and
the 5th and 7th days as test set. The statistics of the datasets are summarized in Table 1 and 2.

| Action | Clips | Frames | Frames per clip |
Sitting 280 | 18287 65
Sleeping 33 7730 234
Standing 181 | 10822 60
Walking 129 3519 27
Background | 250 | 36663 147
total 873 | 77021 88

Table 1: Statistics of the training data, containing 5 days of videos.

| Action | Clips | Frames | Frames per clip |
Sitting 107 7314 68
Sleeping 13 1147 88
Standing 90 5516 61
Walking 72 2010 28
Background | 84 13654 163
total 366 | 29641 81

Table 2: Statistics of the test data, containing 2 days of videos.
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Figure 2: DenseNet architecture.

4 Methods

4.1 Activity Classification

Input. Let a video be 2 € RT*HXWXC 'where T is the number of frames in the video. Our model
f(x) outputs the probabilities of each class, and our goal is to find a f that minimizes the loss of
per-clip classification. During training, we randomly sample clips of length L frames from the
training video. At test time, we uniformly sample N clips from the video and average the results. In
DenseNet models, we concatenate L frames of each clip into a L x C' channel image, so the size of
the input image will be H x W x (LC'), where C' = 1 in both depth and thermal modalities.

Loss function. The loss function we use is the cross-entropy loss function in Pytorch, which is useful
for classification task with C' classes. It can be described as:

_ log(exp(fy, (xi))
loss(f(x:),y:) = _m’

where f;(x;) is the probability score of class j.

4.2 Model

The model architecture we use in this project is Densely Connected Convolutional Network [1].
Densenet is the network that contains shorter connections between layers close to the input and
also layers close to the output. As shown in Figure 2, for each dense block, the feature-maps of all
preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent
layers.

However, in the original DenseNet, it only takes single image 2 € R *WxC 'where C = 3 as input,
yet our input is a video clip 2 € REXHXWXC that is resize to 2* € RF*WX(LC)_ Thus, we need
to modify the “conv0” layer to have the correct input channel. Moreover, since we are taking the
pretrained parameters to fasten the training process, we will need to transform the original 3 channel

weight in “conv0” layer to LC' channel, and also remove the weights for the last fully-connected
layer.

4.3 Multi-modal Recognition

Since we have two modalities, it is reasonable to combine them together to gain a better performance.
One of the methods to fulfill this goal is to since we have two modalities, we can combine them
together to gain a better performance. One of the methods to fulfill this goal is to train two separate
models for depth and thermal, fr and fp, and then during the test time, average the results of the last

layer f(z) = (fr(z) + fp(x))/2.

S Experiments

Evaluation Function. We calculate the overall accuracy, mean average precision, and draw out the
confusion matrix. Overall accuracy is a standard evaluate metric for classification, but mean AP can
better deal with imbalanced dataset. To show out the strength and weakness of the model, we include
the confusion matrix as well.



Hyperparameter Tuning. From Table 3 and 4 we can see that DenseNet 121 with learning rate =
5e-3 performances best for both depth and thermal modalities. Therefore, we pick out these two
models to look at their output details and do the multi-modal recognition by using their outputs of the
last layer.

[ Model | Learning rate | Accuracy | Mean AP |
le-3 0.8852 0.8909
DenseNet 121 5e-3 0.8962 0.9485
le-2 0.8634 0.8981
le-3 0.8798 0.9158
DenseNet 169 5e-3 0.8552 0.9006
le-2 0.8306 0.8777
le-3 0.8852 0.9156
DenseNet 201 5e-3 0.8962 0.9136
le-2 0.8443 0.8612

Table 3: Hyperparameter tuning of depth modality.

| Model | Learning rate | Accuracy | Mean AP |
le-3 0.7978 0.8774
DenseNet 121 5e-3 0.8880 0.9458
le-2 0.8169 0.9049
le-3 0.8361 0.9044
DenseNet 169 5e-3 0.8962 0.9329
le-2 0.8716 0.9105
le-3 0.8197 0.9063
DenseNet 201 5e-3 0.9044 0.9447
le-2 0.8060 0.9167

Table 4: Hyperparameter tuning of depth modality.

Results. From Table 5 we can see that the performances of depth and thermal are almost the same,
both of them achieve about 90% overall accuracy and over 0.94 mAP. Moreover, the result shows that
the combination of two modalities has the best results: about 93% overall accuracy and over 0.95
mAP, which proves that the performance improves when modalities are combined together. Also,
from the confusion matrices in Figure 4 we can see that compare to depth model, thermal model
performances equally well or better in most of the classes, yet very bad in the walking class. The
thermal model always misclassified walking as standing or background. However, the combination of
two modalities can preserve or even outperform the best accuracy of each class in depth and thermal
models.

Learning Curve
(x: Iteration, y: Loss)
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Figure 3: Learning curve of DenseNet 121 with learning rate = 5e-3, batch size = 8, epoch = 40.



| Modality | Accuracy | Mean AP |
Depth 0.8962 0.9485

Thermal 0.8880 0.9458
Depth + Thermal | 0.9262 0.9544

Table 5: Results of action classification on depth, thermal, and the two combined with DenseNet 121
and learning rate = 5e-3.
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Figure 4: Confusion matrices. Left: depth; middle: thermal; right: combined. Index 1 to 5 indicate
the categories sitting, sleeping, standing, walking, and background.

6 Conclusion

This paper introduces a vision monitoring system based on privacy-preserving signals that accurately
monitors the fundamental daily activities of seniors. We also introduced a newly collected real-world
action classification dataset with both depth and thermal modalities, and the performance of our
action classification model is great.

In the future, we will try to extend this task into a temporal action detection task by using our
current model with smoothing window or a network that is create for video analysis, such as C3D [3]
mentioned in related work.
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