CS230

Post-stroke Lesion Detection using ATLLAS Dataset

Andrew Zhang Chenyao Yu Helen Jiang
Stanford University Stanford University Stanford University
azhang97@stanford.edu chenyaoy@stanford.edu helennn@stanford.edu
Abstract

Hundreds of thousands of people in the United States suffer from a stroke every
year. A vast majority of stroke survivors suffer long-term physical, emotional,
and cognitive problems, highlighting the importance of early treatment for proper
recovery. Accurate identification of stroke lesions from a victim’s head MRI slices
can help doctors in treatment and research for post-stroke recovery, but currently
this requires manual segmentation by medical experts. Recently, deep learning
has helped automate lesion identification and a well-trained system could provide
quick lesion identification and produce datasets for further stroke research. In this
paper, we explore the 2D U-Net architecture with a variety of improvements on the
new ATLAS dataset in the domain of post-stroke lesion detection.

1 Introduction

We hope to tackle the problem of automatic identification of lesions from MRI slices of the brains of
stroke victims. The current gold standard for identifying the location of the post-stroke lesions is
through manual segmentation, which takes trained experts an hour per MRI scan. As such, existing
stroke neuroimaging datasets are prohibitively small; automation of lesion identification would
allow researchers to feasibly compile large neuroimaging datasets, and advance research to improve
post-stroke recovery. We are looking to improve the efficacy of automated identification of the lesions
using a larger dataset and deep learning techniques.

The input to our algorithm is a single MRI scan: a 232 x 196 grayscale image. We use a neural
network to output a prediction for lesion segmentation: a 232 x 196 binary image. While we used
a conv-deconv network as our baseline model, our research focused on exploring the effects of
modifications to a 2D U-Net model architecture.

2 Related work

[1], [2], and [3] gives the context and details for brain MRI segmentation using deep learning, where
they all use Convolutional Neural Networks for segmentation.

[4] provides a short background of many approaches to medical image segmentation, including many
methods that do not involve any neural networks, even though CNN’s are shown to perform better
than those methods that do not involve deep learning on its own.

In [7], we are given the benefits of BatchNorm, which we incorporate into our model to achieve
better results. Batchnorm allows higher learning rates, reduces the dependency on initialization, and
provides some sort of regularization.

[5] introduces 3D U-Net which learns from sparsely annotated volumetric images for volumetric
segmentation, which works for both semi-automated and automated segmentation cases.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



3 Dataset and Features

For our task, we are using the provided ATLAS (Anatomical Tracings of Lesions After Stroke)
Dataset [9]. ATLAS contains 229 MRI scans from 220 distinct patients, collected from 9 sites. Each
scan includes slices of the head MRI, ground truth segmentation masks, as well as meta-labels for
each scan. Some meta-labels include the number of lesions, the type of stroke, and the primary stroke
location. There are a total of 43281 MRI slices. A sample slice is seen in 1.

The dataset was split 70/30 by slices into our train/dev set. Each scan is preprocessed by cropping to
size 232 x 196. We used data augmentation like random flips and distortions to increase the amount
of training data and reduce overfitting.

Figure 1: An example slice from the ATLAS Dataset

4 Methods

4.1 Baseline: Conv-Deconv Network

The baseline is a Conv-Deconv which consists of a convolutional encoder part comprising two stacks
of 2D convolution with ReLU layer, max pooling, and dropout. This is followed by a fully-connected
layer, another dropout layer, and a final fully-connected layer. This part of the network allows the
network to learn higher level features from the input image.

The second deconvolution decoder part essentially rescales the output back to the original input
size to produce the high-resolution mask predictions. This part is comprised of a fully-connected
layer followed by a dropout layer and another fully-connected layer with dropout, and then by two
upsampling and 2D deconvolution layers.

4.2 2D U-Net

The 2D U-Net model is a network that combines a contracting path that learns higher level features
with an expansive path that allows for the network to output a high-resolution segmentation map. In
these successive layers, the pooling operators are replaced by upsampling operators (as seen in fig. 1),
which increases the resolution of the output. It is essentially a more complex Conv-Deconv model.

We chose to explore the 2D U-Net model for the domain of post-stroke lesion detection because it
can capture information from multiple levels of the input image of the MRI scans directly into the
output. We also wanted to see if this proven model would generalize well to this new dataset and
problem space of predicting post-stroke lesions.

We also experimented with adding BatchNorm [7] to our models, a technique popular today for
accelerating convergence and improving results. The BatchNorm paper was published very shortly
before [6] and so although it was used in the 3D U-Net architecture, it was not used in the former 2D
architecture. We added BatchNorm before the ReLU activation in our 2D convolution layers.

Since we were given patient metadata for each MRI scan, we wanted to test the performance of
integrating metadata into our input. Our input included the number of left and right, cortical and
subcortical strokes that the patient suffered. The metadata values were appended to the input scan as
4 additional channels, so as to make the information available to all pixels.

Each slice contains varying numbers of lesion-positive pixels, with many having few-to-none. As
such, the network has greater difficulty increasing its recall. We use weighted cross-entropy between
the logits for our prediction and the ground truth segmentation, and experimented with the weight
that should be used to calculate our loss. Theoretically, a larger positive weight encourages a decrease
in the false negative count and increases recall.



H - Vanilla w/BatchNorm w/ Metadata + BatchNorm H

Baseline  0.182 0.288 — \
2D U-net 0.147 0.173 0.202 1

Table 1: Dice coefficients of various models

00K 3 k =0 A 1 &N ¥ BSOS .
WK AR SR 500.0 500k 2.500 3.500k

(a) Training Loss (b) Dice Coefficient
Figure 2: Baseline Conv-Deconv Model (batch size 100)

5 Experiments/Results/Discussion

5.1 Evaluation

We evaluate our segmentation performance by comparing the dice coefficient, the most common
metric for evaluating segmentations of MRI imaging data.

2TP
2TP+ FP+ FN

DICE =

where TP, FP, FN represent the true positive, false positive, and false negative pixel counts of the
lesion mask predicted by the algorithm compared to the ground-truth lesion mask.

5.2 Results & Discussion

The baseline conv-deconv model performs decently well with a dice coefficient of 0.182 after 30
epochs. The addition of batch normalization makes a noticeable increase in performance, resulting
in a dice coefficient of 0.288 after 30 epochs. This makes sense due to the benefits that batch
normalization gives us, as described in [7]. Batch normalization is a technique applicable to a wide
variety of problems and domains and we have shown that incorporating it in this relatively simple
model can be very beneficial for working with segmenting imaging data. From the dice coefficient

(a) Training Loss (b) Dice Coefficient
Figure 3: Baseline Conv-Deconv Model w/ BatchNorm (batch size 100)



w
o]
o

o

uuuuuuu

0.200

G 0.0400
0.00 0.00
0000 4000k B.000k 12.00k 4000k 7.000k 1000k 13.00k
() Training Loss (b) Dice Coefficient
Figure 4: 2D UNet Model (batch size 25)
Y AnY H 0.190
0.200 0.150

0000 4000k BO0OOK 12.00K 4000k 7.000k 1000k 13.00K
(a) Training Loss (b) Dice Coefficient
Figure 5: 2D UNet Model w/ BatchNorm (batch size 25)

curves, we also see that early stopping could be beneficial with this model, as the dice coefficient
peaks or plateaus before the end of 30 epochs.

The 2D U-Net seems to under-perform the conv-deconv model, with a dice coefficient of 0.147.
Adding batch normalization only increased this to 0.173, which is still lower than the baseline model
without batchnorm. There are a few reasons for the disappointing results. First, from Figures 3 & 4,
we see that after 30 epochs, the performance has not plateaued and we would expect better results
from training the model with more epochs, which we did not have time to do. The U-Net model took
around 10 hours to train 30 epochs.

Another consequence of such long training times is the difficulty of iterating and tuning hyperparame-
ters. As a result, we did not have the time to extensively explore the effects of many hyperparameters
on the performance and instead focused on changing parts of the model. Because it is a fairly complex
model, we would expect the U-Net to be sensitive to hyperparameters that were carefully tuned in the
original paper, which is the second reason for the poor performance.

0.220
0.900
0.180
0.700
0.140
0.500 -
0.300 0.0600
0.100 0.0200
0.000 4.000< 8.000k 12.00k 16.00 0.000 4.000k B.000k 12.00k 16.00k
(a) Training Loss (b) Dice Coefficient

Figure 6: 2D UNet Model w/ Metadata & BatchNorm (batch size 25)



0000 3000k 6000k  9.000 0000 4000k 800K 12.00k 16.00
(a) Original Dice (b) Thinned Dice
Figure 7: Thinned vs Original 2D UNet Model w/ Metadata & Batchnorm

0.300 0220

0.200

00 4.000k B8.000k 12.00k 16.00k 0.000 4.00Ck 8000k 12.00< 16.00k

(a) Dice, weight = 50 (b) Dice, weight = 100

Figure 8: Effect of weight in weighted cross-entropy loss

Thinning our network by halving the number of filters at each stage of our U-Net architecture helped
speed up epochs by more than double. The thinned network even outperformed the larger architecture
at equal amounts of training, suggesting that the model likely had difficulty learning the large number
of parameters in our original network.

Finally, as expected, using a larger positive weight in our weighted cross-entropy helped increase our
recall, which helped the network learn a higher DICE score as well.

We were also limited by GPU memory, which accounts for the much noisier loss curves of the U-Net
model because we had to reduce the batch size from 100 to 25.

6 Conclusion & Future Work

The baseline conv-deconv model performed much better than the 2D U-Net model on our task. While
this is surprising, it shows how much the 2D U-Net model, a much more complex model, depends on
computation resources and hyperparameter tuning. We also showed that incorporating BatchNorm
can yield a big performance boost for our task and including metadata features can be promising as
well.

Because we have volumetric medical imaging data, we hope to implement the 3D U-Net from [5]
in the future and apply it to our problem. 3D U-Net has been shown to work better than the 2D
architecture for volumetric data in related domains, so it would be an interesting model to try.

Another issue is the amount of time it takes to train the U-Net models. The 2D U-Net model took us
10 hours to train 30 epochs, and as mentioned in the discussion section, we would have benefited
from training it on even more epochs. We expect the 3D U-Net to take even longer to train. For future
work, we would want to train the U-Net models longer, until performance plateaus. We would also
want to perform a hyperparameter search, which we did not have time to do.

Later on, we would also try to improve performance by adding more features, layers, and dimensions.
We can experiment with using different clustering methods and Random Markov Field models, which
are also popular methods for segmentation [4].



7 Contributions

Andrew focused on the metadata and cross-entropy weighting additions to the conv/deconv and U-Net
model. Chenyao focused on the batchnorm and data augmentation. Helen focused on the drafts of
the papers and poster. All team members worked together on brainstorming and the final draft.

References

[1] Z. Akkus, A. Galimzianova, A. Hoogi, D. L. Rubin, and B. J. Erickson. (2017) Deep Learning for Brain
MRI Segmentation: State of the Art and Future Directions.

[2] C. Bermudez, A. J. Plassardb, L. T. Davisc, A. T. Newtonc, S. M. Resnickb, B. A. Landman. (2018) Learning
Implicit Brain MRI Manifolds with Deep Learning.

[3] N. Bien. (2018) Don’t Just Scan This: Deep Learning Techniques for MRI.
[4] D. L. Pham, C. Xu, and J. L. Prince. (2007) Current Methods in Medical Image Segmentation.

[5] O. Cicek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and Olaf Ronneberger. (2016) 3D U-Net: Learning Dense
Volumetric Segmentation from Sparse Annotation.

[6] Olaf Ronneberger and Philipp Fischer and Thomas Brox. (2017) U-Net: Convolutional Networks for
Biomedical Image Segmentation.

[7] Sergey loffe and Christian Szegedy. (2015) Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift.

[8] Sook-Lei Liew. (2017) The Anatomical Tracings of Lesions After Stroke (ATLAS) Dataset



