Neural Generation of Source Code for Program Synthesis

Kensen Shi

Department of Computer Science

Stanford University

kensens@Qcs.stanford.edu

Abstract

Existing program synthesizers sometimes consider
many unnatural candidate programs that a human
programmer would immediately identify to be unde-
sireable in some way. To improve the quality of these
candidate programs, we propose a neural model that
generates a sketch of a method body given the desired
method signature (where the sketch would later be
concretized and evaluated by a program synthesizer).
Specifically, we use transfer learning: we first train
the model on a large dataset of code scraped from
GitHub, and afterward we retrain the model to ob-
tain a different distribution of code phenomena that
will be useful to a specific program synthesizer. Our
model is able to produce reasonable-looking method
sketches even for signatures unseen during training.

1 Introduction

Program synthesis is the task of automatically gen-
erating a program (source code) that meets a given
specification. For example, a user might provide
input-output pairs or a logical formula that describes
the desired program’s behavior, and a program syn-
thesizer must find a program that adheres to the
specification or otherwise satisfies the user. Many
program synthesizers involve a search over programs,
but the distribution over searched programs is often
very different from the distribution over source code
that experienced human programmers might write.
For example, brute-force approaches that enumerate
all programs in a grammar, and random searches that
generate programs in a straightforward way, will typ-
ically consider programs that contain redundant or
useless computation.

FRANGEL! is a Java program synthesizer that ac-
cepts a desired method signature along with input-

LA research project I worked on with Prof. Percy Liang,
independent of CS 230.

output examples and outputs a Java method im-
plementation consistent with those examples. At
a high level, FRANGEL naively generates abstract
syntax trees (ASTs) representing the source code
in a top-down fashion, choosing nodes randomly
among options that typecheck (given any type con-
straints implied by the parent nodes). Each gen-
erated method implementation is executed to check
for a match on the given input-output pairs. Un-
fortunately, FRANGEL suffers from the previously-
described problem—it often generates code that a
human programmer can immediately identify as ex-
cessively verbose, redundant, or trivial, such as the
following:

String foo(String str) {
int varl = O;
String var2 = "";
str = var2;
return "";

In the above example, varl is declared but never
used, the argument str is “thrown away” by being
assigned to var2 before str is used at all, and the
return expression is a constant (with no dependence
on any variables). These symptoms, among others,
are quite common in FRANGEL’s randomly-generated
code.

This project aims to use a neural model to generate
natural source code, approximating the distribution
of reasonable code that a human programmer might
write for a given method signature. This can aid ex-
isting program synthesizers such as FRANGEL by re-
ducing the number of “obviously-bad” programs that
must be executed or evaluated.

Our model takes as input the types in the desired
method signature and outputs a sequence of tokens
for the method body. We focus on code sketches,
where variable names, method names, string literals,
and other categories of tokens are abstracted, since
such tokens do not generalize across different pro-

grams. Hence, return <Class>.<Method>(varl,
<Stringliteral>) ; might be a part of a code sketch
produced by our generative model. Concretizing
these code sketches while satisfying type constraints
is a task left to the program synthesizer.

2 Data Collection

2.1 Data from GitHub

To create the GitHub dataset, we downloaded the 20
most-starred Java repositories on GitHub and used
Eclipse’s Java parser to obtain ASTs for all Java files.
Because the AST does not directly provide a tok-
enization of the source code, we obtained a sequence
of tokens for each method in the following manner.
Each node of the AST corresponds to a substring of
the source code. For instance, a node for array ac-
cess might correspond to the code arr[i + 1], and
its children nodes correspond to the expressions arr
and i + 1. The tokens contributed by the array ac-
cess node are the consecutive characters that are not
covered by its children, i.e., [and]. Hence, to ob-
tain tokens, a node collects its children’s tokens and
inserts the remaining blocks of consecutive characters
(with whitespace stripped) as tokens in the proper
places, producing the sequence of tokens arr, [, i, +,
1, and] in the previous example.

We standarized variable names (argl, arg2, and
so on for arguments; varl and so on for lo-
cal variables, etc.) and grouped certain types of
tokens (e.g., 12.3 and 230 are both replaced
with <NumberLiteral>, and other groups include
<Class>, <Method>, etc.). In this way, we refrain
from learning the implementation-specific details of
the dataset and focus instead on the general struc-
ture of the code.

We limit the GitHub dataset to include only static
methods with 10 to 120 tokens in the method body,
and we also exclude methods using certain Java con-
structions that FRANGEL cannot handle (e.g., ex-
ception handling, lambda expressions, switch state-
ments, etc.?). This results in over 10,000 examples.
10% of the examples were set aside for validation, and
the remaining 90% were used for training,.

The following are two examples from the GitHub
dataset. Tokens are space-separated, and newlines

2This was not done exhaustively—simpler constructions
such as the ternary operator were left in the dataset, even
though FRANGEL does not produce ternary operators.

and indentation were added for clarity. The first to-
ken in the signature is always the method’s return
type, and remaining tokens are the argument types.

Signature: int int[]

Method:

int varl = <NumberLiteral> ;

for (int eleml : argl) {
varl *= eleml ;

}

return varl ;

Signature: void <Class> <Class>

Method:
String varl = <Method> (argl) ;
<Class> . <Method> (arg2 , varl) ;

2.2 Data from FRANGEL

We noticed that the GitHub dataset does not include
a high proportion of looping control structures, which
are frequently necessary to solve tasks in FRANGEL’s
benchmarks. Hence, to obtain training data that
more closely matches the desired distribution of code
phenomena, we also collected method implementa-
tions by running FRANGEL 20 times on our existing
benchmark suite of 90 tasks.

Because we ran FRANGEL multiple times, and
FRANGEL uses a random search, many tasks have
multiple solutions. Hence, we weight the examples
such that each task has equal weight, and the task’s
total weight is divided equally among its solutions.
Thus, the dataset is not biased toward tasks with
many different solutions. We refer to this dataset
of FRANGEL-generated solutions as the Solutions
dataset, containing about 500 examples.

In addition to solutions to tasks, FRANGEL also out-
puts some “partial successes” (method implementa-
tions that pass some but not all of the test cases).
These partial successes are often similar in structure
to the solutions, so we include them (along with the
solutions) in a Synthesizer dataset, containing about
3000 partial successes in addition to the 500 solutions.
Examples are weighted where half of a task’s weight
is distributed among the task’s partial successes, and
the other half among the task’s solutions.

The Solutions and Synthesizer datasets were split
into train/val/test sets by task. Specifically, 9 tasks
were randomly chosen to form the validation set, 9
remaining tasks formed the test set, and the remain-
ing 72 tasks formed the training set. (For consistency,
the same tasks were selected for both datasets.) In

this way, the validation and test sets cover tasks and
signatures that are not present in the training set.

We use a vocabulary including all 63 distinct tokens
in the Synthesizer dataset, plus the most common
tokens in the GitHub dataset to reach a vocab size
of 100. We discarded the 1.7% of examples in the
GitHub dataset with tokens not in the vocabulary.

3 Approach

3.1 Model Architecture

Our recurrent model takes as input (at each time
step) the previous token and the method signature,
and outputs a probability distribution for the text
token. (The model only produces the method body,
not including the method signature.) The method
signature is described by the return type, followed
by argument types, padded if necessary to become
a fixed length.®> Tokens (including types in the sig-
nature) are mapped to a 64-dimensional embedding,
which is learned during training. The embeddings are
passed through a 2-layer LSTM with 512 hidden di-
mensions per layer, and finally a fully-connected layer
with softmax activation transforms the LSTM output
into a probability distribution over tokens. We im-
plemented this model using PyTorch [5].

We trained the model using a modified cross entropy
loss that takes into account the example weight and
the output sequence length. Specifically, the loss
function minimized is

y 18]

Z| >|Zlog1"(><j>> 3 w®
=1

where m is the number of examples, w(?) is the weight
of the i-th example, y(is the output sequence of
the i-th example, 5P is the j-th token of y(?, and
p(t) is the model’s predicted probability of token ¢
(note that p is computed by a recurrent model and
changes at each time step). We normalize by the
length to avoid a bias toward longer sequences, which
contribute more terms to the inner sum.

Sampling from the model (given a method signature)
is done in the standard way—sampling one token at
a time from the model’s output probability distribu-
tion, and feeding each token back into the model to
produce the next token, until an end-of-sequence to-
ken is sampled.

3We handled methods with up to 4 arguments, even though
FrRANGEL’s benchmarks only involve up to 3 arguments.

3.2 Transfer Learning

Note that the GitHub dataset is relatively large but
does not contain the ideal distribution of code phe-
nomena actually required by solutions to FRANGEL’s
benchmarks. On the other hand, the Solutions and
Synthesizer datasets are generated by FRANGEL and
are much closer to this desired distribution, but these
datasets are much smaller. We therefore use trans-
fer learning—first training on the GitHub dataset,
and then training on the Solutions or Synthesizer
datasets—to let the model learn general properties of
code (i.e., where to place semicolons) from the larger
GitHub dataset while refining the output distribution
to mimic the smaller synthesizer-generated datasets.
This application of transfer learning to obtain a more
desirable output distribution is a primary contribu-
tion of this project.

3.3 Hyperparameters and Training

The number of LSTM layers and hidden dimensions,
learning rate (0.002), and weight decay (f2 regular-
ization parameter of 0.0002) were all chosen with a
hyperparameter search using the Synthesizer valida-
tion loss of the best model (among all models, trained
with and without transfer learning). We used a mini-
batch size of 128 and trained the models for 50 epochs
with the Adam optimizer. However, after every epoch
we computed the validation loss, and we selected the
model that minimized that loss, which typically oc-
cured before epoch 30.

4 Results

Table 1 summarizes our results. The first three rows
correspond to models trained only on a single dataset
(without transfer learning), and the last two rows cor-
respond to transfer learning models trained first on
the GitHub dataset and then on either the Solutions
or Synthesizer dataset. The columns correspond to
the train and test sets of the Solutions and Synthe-
sizer datasets. The loss and token-level accuracy are
listed in the cells. Accuracy is computed with the fol-
lowing formula (weighted and normalized by sequence
length, similar to the loss):

-)
— D1 \y(>| Z‘y g [D0) = arg maxiey p(v)]
L wl

Training method Sol-Train Sol-Test Syn-Train Syn-Test

GitHub 1.23 (70.6%) 1.27 (72.4%) 1.37 (68.5%) 1.33 (70.5%)
Solutions 0.72 (78.6%) 1.26 (62.6%) 0.93 (73.0%) 1.33 (60.7%)
Synthesizer 0.44 (87.0%) 1.09 (69.4%) 0.52 (84.0%) 1.13 (68.4%)
Transfer-Sol 0.26 (92.7%) 1.00 (74.6%) 0.54 (85.7%) 1.06 (73.0%)
Transfer-Syn 0.22 (93.7%) 0.95 (75.1%) 0.32 (90.4%) 0.99 (73.8%)

Table 1: Loss (and token accuracy) for models trained on the 3 datasets and two transfer learning models.
The Transfer-Syn model, trained on the GitHub and Synthesizer datasets, performs the best overall.

Figure 1 shows some example programs generated by
Transfer-Syn for signatures not present during train-
ing. We note that the implementations generally look
reasonable for the given signatures, although not all
of them will compile (after appropriately concretizing
the method sketches).

4.1 Discussion

Table 1 shows that the transfer learning approach is
successful. That is, Transfer-Sol and Transfer-Syn
consistently achieve lower loss and higher accuracy
than the Solutions and Synthesizer models respec-
tively, on both test sets. Furthermore, while the So-
lutions and Synthesizer models obtain lower accuracy
than the GitHub model (which is not unreasonable
since the Solutions and Synthesizer datasets are very
small), both transfer learning models outperform the
GitHub model on both metrics. Thus, we conclude
that the transfer learning approach is an effective way
to learn from scraped and synthesizer-produced code.

The results also show that models trained on the full
Synthesizer dataset (with and without transfer learn-
ing) outperform models trained only on the Solutions
subset, even when tested on the Solutions subset.
From this observation, we conclude that expanding
a synthesizer-produced dataset with partial successes
in addition to final solutions can significantly boost
overall performance.

The Transfer-Syn model, trained first on the GitHub
dataset and then on the Synthesizer dataset, is con-
sistently the best model in all metrics. By using
transfer learning with the full Synthesizer dataset,
it is positively affected by both of the above observa-
tions. The model exceeds 75% token-level accuracy
on the Solutions test set, which is quite impressive
considering that there are many reasonable method
implementations for a given input signature, so it is
impossible to achieve 100% accuracy.

Our models do not always produce method sketches
that will compile (after concretization). The most

common errors we observed were mismatched types,
incorrect variable naming, and missing or extrane-
ous parentheses or braces. For instance, the second
method in Figure 1 attempts multiply by arg2, but
arg? is a String according to the signature. The
first method in Figure 1 declares the variable eleml
twice, when it should have used elem2 for the inner
loop.

We also observed the models generalize beyond the
signatures seen during training by learning good to-
ken encodings. In particular, the first method in Fig-
ure 1 has a signature similar to one in the training
set, except with a List instead of a Set. As a result,
the model is able to generate a method that is sim-
ilar to the training example’s solution, except using
an ArrayList instead of a HashSet (and erroneously
using eleml in place of elem2 as discussed earlier).

5 Related Work

Many works in program synthesis use various deep
learning approaches (sometimes combined with pro-
gram synthesis techniques) to produce programs from
natural language descriptions [1, 3, 6, 7] and/or
input-output examples [2, 6]. However, these ap-
proaches primarily aim to find a correct solution to
the task described by the input. Our setting is quite
different, since the input is a method signature that
corresponds to many possible method bodies. Fur-
thermore, we do not want to produce a single “best”
output—we instead seek a generative model that can
produce a variety of method bodies for a single sig-
nature, to be used as a first step in a larger program
synthesizer.

Maddison and Tarlow [4] propose generative models
of natural source code. While their goal of natural-
ness is similar to ours, their model is not directly ap-
plicable to program synthesis because it is uncondi-
tional, whereas our setting requires generating source
code conditioned on properties of the synthesis task
(specifically, the desired method signature).

Signature: List String[] String[]
Method:
ArrayList varl = new ArrayList();
for (String eleml : argl) {
for (String eleml : arg2) {
if (eleml.<Method>(eleml)) {
varl.<Method>(elemi) ;
}

}

return varl;

Signature: double <Class> String
Method:
return <Class>.<Field> * arg2 + argl.<Method>();

Signature: <Class>[] <Class>[] String
Method:
for (int il = <NumberLiteral>;
il <IneqOp> argl.<Field>; il++) {
<Class>.<Method>(argl, arg2);
}

return argl;

Signature: void <Set> <Class> int
Method:
for (int il = <NumberLiteral>;
i1l <IneqOp> arg3; il++) {
<Class>.<Method>(argl, arg2.<Method>(arg3));

Signature: <Class> short

Method:

<Class> varl = new <Class>();
varl.<Method>(<NumberLiteral>, argl);
return varl;

Signature: Object boolean Object
Method:
for (<Class> eleml : argl) {
if (arg2.<Method>(eleml)) {
return <Class>.<Method>();

}
F &

return arg?2;

Figure 1: Example programs generated by the best
model, Transfer-Syn. None of these signatures ap-
peared in any of the training sets. Whitespace is
edited for clarity. Compilation errors are underlined
in red.

The author is not aware of other work that specif-
ically generates method bodies given the desired
method signature.

6 Conclusion

We presented a model that generates source code
sketches of a method body given the desired method
signature. We found that transfer learning is an effec-
tive way to learn from code scraped indiscriminately
at a large scale while approximating a different distri-
bution of desired code phenomena. Our model pro-
duces natural-looking code even for signatures unseen
during training. Overall, this approach seems to be
a promising way to improve the candidate programs
considered by search-based program synthesizers.

As future work, one can modify the model to output a
tree instead of a sequence, since code inherently has a
tree structure. This could be done using a tree-based
LSTM structure [8, 9]. Furthermore, one can force
the model to follow the language rules by remem-
bering certain information (e.g., types of variables)
during generation and sampling only from allowable
options at each time step. Beam search can assist
with this, allowing for “backtracking” in case the al-
lowable options have small probability, or if none of
the options are allowed.

Acknowledgements

The author would like to thank Abhijeet Shenoi, Prof.
Percy Liang, and Jacob Steinhardt for insightful dis-
cussions and helpful advice.

References

[1] M. Balog, A. L. Gaunt, M. Brockschmidt,
S. Nowozin, and D. Tarlow. Deepcoder:
Learning to write programs. arXiv preprint
arXiv:1611.01989, 2016.

[2] J. Devlin, J. Uesato, S. Bhupatiraju, R. Singh,
A. Mohamed, and P. Kohli. Robustfill: Neu-

ral program learning under noisy I/O. CoRR,
abs/1703.07469, 2017.

[3] X. V. Lin, C. Wang, D. Pang, K. Vu, and M. D.
Ernst. Program synthesis from natural language
using recurrent neural networks. Technical report,

Technical Report UW-CSE-17-03-01, University

[4]

[5]

[6]

7]

18]

[9]

of Washington Department of Computer Science
and Engineering, Seattle, WA, USA, 2017.

C. Maddison and D. Tarlow. Structured genera-
tive models of natural source code. In Proceedings
of the 31st International Conference on Machine

Learning (ICML-14), pages 649-657, 2014.

A. Paszke, S. Gross, S. Chintala, G. Chanan,
E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differenti-
ation in pytorch. In NIPS-W, 2017.

I. Polosukhin and A. Skidanov. Neural pro-
gram search: Solving programming tasks from
description and examples. arXiv preprint
arXiv:1802.04335, 2018.

M. Rabinovich, M. Stern, and D. Klein. Abstract
syntax networks for code generation and semantic
parsing. arXiv preprint arXiv:1704.07535, 2017.

K. S. Tai, R. Socher, and C. D. Manning.
Improved semantic representations from tree-
structured long short-term memory networks.
arXiv preprint arXiw:1503.00075, 2015.

X. Zhu, P. Sobihani, and H. Guo. Long short-
term memory over recursive structures. In Inter-
national Conference on Machine Learning, pages

1604-1612, 2015.

