Air Quality Forecasting Using Convolutional LSTM

Shuo Sun Gaoxiang Liu
Department of Computer Science Department of Computer Science
Stanford University Stanford University
sunshuo@stanford.edu gaoxiang@stanford.edu
Abstract

Air quality is now one of the biggest concerns around the world, especially in
developing countries. Different air pollutants can harm people’s health in a variety
of ways. Being able to forecast air quality allows people to prepare beforehand and
reduces the impact of hazardous weather. In this paper, we leverage the power of
Convolutional LSTM architecture to tackle air quality forecasting problem. Convo-
lutional LSTM, by combining convolution operation with LSTM architecture, has
shown to be powerful with spatiotemporal sequences. By applying Convolutional
LSTM, we achieve significant improvement over traditional fully connected LSTM
and get top-tier performance compared to other teams in the KDD competition.

1 Introduction

Over the past decades, as industrialization progressed around the world, air pollution becomes an
increasingly pervasive issue. PM2.5, one of the common yet very harmful air pollutants, is shown
to be able to penetrate lungs and cause vascular inflammation and hardening of the arteries [1].
Providing air quality forecast plays a crucial role in reducing the impact of hazardous weather on
people’s health. The goal of air quality forecasting is predicting future air quality metrics, given
historical weather and air pollutant concentration data of a region.

Since the objective is to predict sequential data, RNN is a natural choice of model. LSTM has been
proven to be a powerful model for sequential data prediction [2]. However, the traditional fully
connected LSTM (FC-LSTM) cannot efficiently catch the spatial correlation within the data, while
the weather and air quality data are naturally correlated spatially, i.e. at one location, its future values
are mostly related to its nearby locations. Meanwhile, convolutional neural network has shown its
effectiveness of capturing the spatial correlation with sparsity of connection and parameter sharing.

Therefore, by combining LSTM and CNN, the model can be good at both predicting sequential data
and capturing spatial relation. Shi et al. proposed the Convolutional LSTM algorithm applying to
precipitation nowcasting [3]. The algorithm demonstrates its advantage and significantly outperforms
the traditional FC-LSTM. In this paper, we use Convolutional LSTM to build air quality forecasting
model, which takes a series of hourly weather and air quality metrics of Beijing of the past 24 hours,
to predict the air pollutant concentrations measured by 35 air quality stations for the future 48 hours.

2 Related Work

Weather and air quality forecasting used to be a domain of statistical and mathematical models.
In the past decades, researchers and mathematicians have built a variety of mathematical models
dedicated to a range of tasks. For weather forecasting, a model based Ensemble Model Output
Statistics (EMOS) is very effective [4]. For air pollution, a model based on Auto-Regressive Moving
Average (ARMA) has shown to be powerful in SO, forecasting [5]. These methods, although can
achieve state-of-the-art performance, require researchers’ extensive effort to develop, and the results
may highly depend on the climate of the target city or area.
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In addition, with the increasing availability of data and big data processing systems such as Hadoop,
scientists proposed air quality forecasting methods based on massive weather and air quality data
collection and processing system. In [6], the author designed a system based on GIS, sensors across
the city, and complex computer data processing systems to predict the concentrations of PM2.5,
PM10, and NO,. This approach can potentially achieve very good performance with fast updates, but
also requires immense computing power and high-coverage accurate sensor system.

In addition, with the significant progress of machine learning in the past decade, researchers have
proposed many machine learning approaches for weather and air quality forecasting as well. In [7],
the author uses neural network to forecast the concentration of SO,, PM10 and CO. Zheng et al.
propose an ensemble model consisting of linear regression, neural networks, dynamic aggregator, and
inflection predictor to do fine-grained air quality forecasting [8]. Other models such as LSTM are
also applied to hourly pollutant forecasting by Li et al. [9]. The machine learning approach is gaining
dynamics in the recent years, but the performance is currently not as good as the traditional models.

3 Dataset and Features

3.1 Data Format

This project is based on the KDD competition of 2018. Therefore, KDD provides both weather and
air quality data [10]. Each record of the weather contains station name, longitude, latitude, time,
temperature, pressure, humidity, wind direction, and wind speed. Each record of air quality contains
station name, time, PM2.5, PM10, NO,, CO, O3, and SO,. The weather data of each timestamp is a
21 x 31 x 5 tensor, with cells 0.1 degrees away in longitude and latitude from each other. The air
quality stations are not uniformly distributed within the area. Both data are hourly records.

KDD competition provides full-year data of 2017, April 2018 data for pre-competition testing, and
May 2018 data for final judgment. In order to align with the competition setup, we use the data of
2017 for training, that of April 2018 for validation, and that of May 2018 for final testing. During
training, we split the data into 72-hour sequences, as the final goal is to use 24 hours of data to predict
48 hours of metrics. In test time, we split the one-month data into 30 24-hour sequences, and let the
model predict for each day the next 48-hour metrics to calculate the quality metrics.

3.2 Mapping Air Quality Data to Weather Data Grid

While the weather data are tensors, the air quality data are not. Therefore, we need to map the air
quality metrics to the weather grid. For this project, we do the mapping using the weighted average
of the metrics of all 35 stations, where the weight is the inverse squared distance from the grid cell to
each station, which is shown in (1). Here, d; . is the distance between the grid cell and station 4,
and € is a small number to prevent divide-by-zero error:
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3.3 Data Normalization

Weather and air quality data are of a wide range of scales. As shown in Figure 1, pressure data
usually are of range (800, 1100). Input and target of such large values make the optimization problem
harder and can cause extremely large gradients. Therefore, in our project, we apply normalization
for each sequence. During training time, we compute the mean and variance of the whole 72-hour
sequence and apply normalization on both input and target. During test time, we compute the mean
and variance based on the input 24-hour sequence and use the same values to re-scale the model
output back to the unnormalized range.

4 Methods

To take advantage of the spatiotemporal relation of the weather and air quality forecasting problem,
we use Convolutional LSTM (ConvLSTM). In traditional FC-LSTM, each cell state transition takes
all the input values and previous hidden states as input, which introduces a very large number of
parameters. In contrast, ConvLSTM uses convolution operation instead, which significantly reduces
the number of parameters and improves the performance.
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Figure 2: Inner structure of ConvLSTM [3]
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4.1 Convolutional LSTM

Convolutional LSTM, proposed by Shi et al., is a powerful model when the sequential data show
correlations in space. It uses convolution operation to computer the state transition gates, leveraging
parameter sharing and sparsity of connection of data. As shown in Figure 2 [3], each state transition
of a ConvLSTM cell only uses a very small subset of the input and the previous hidden states, making
both training and computing much more efficient. The formulas of ConvLSTM are shown in (2).
Here, we denote X; as the input tensor, H; as the hidden state tensor, and C} as the cell state tensor.
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4.2 Air Quality Forecasting Model

The overall model is shown in Figure 3. The model takes the normalized input tensor and feeds it
to a multi-layer ConvLSTM network. The output of the ConvLSTM is then used to generate two
predictions. The first one is the air quality measure of each air quality station. To compute that, the
model takes the closest 3 x 3 tensor surrounding each air quality station and applies another 3 x 3
convolution to make it into a vector. Then the model uses a fully connected linear layer to generate
the concentration predictions of the 6 pollutants.

In addition, the model also uses the output of the ConvLLSTM to predict the weather and air quality
grid for the next time stamp. We choose to let the model uses and predicts weather data as well
because we believe that weather and air quality predictions are closely related tasks. Therefore, by
doing multitask learning, the model can achieve better performance. To predicts the grid, the model
applies a 1 convolution with linear activation to the output of the ConvLSTM.
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Figure 3: Air quality forecasting model
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5 Experiments and Discussions

5.1 Experiment Setup and Metrics

In this paper, we compare the performances of FC-LSTM and ConvLSTM with different filter sizes,
channels sizes, and numbers of layers. The model is trained using Adam optimizer with mean
squared error (MSE) loss because all the prediction values are real numbers. To evaluate the model
performance, we adopt the same metric used in the KDD competition, which is symmetric mean
absolute percentage error (SMAPE), define as (3). Here, F; and A, are the forecasted and actual value
respectively. The SMAPE score for one day is the average of SMAPE scores of the three grading
metrics (PM2.5, PM10, and O3) of all 35 air quality stations for the next 48 hours. The SMAPE score
of the model is the average of smallest 25 daily scores of the 30-day testing data.
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For this project, we use PyTorch [11] and NumPy [12] to implement our model, and use Matplotlib
[13] and seaborn [14] to do visualization. We search online for PyTorch ConvLSTM implementation,
but because PyTorch is relatively new and being updated frequently, we do not find a well-structured
and up-to-date implementation of the algorithm. We end up writing our own version of it.

5.2 Hyperparameters and Training Process

In our experiment, we choose different combinations of filter size, hidden state channel size, and the
number of layers. We experiment on filter size of 1 X 1, 3 x 3, and 5 X 5, in order to explore how
important spatial correlation is to the model performance. We also train models with hidden states of
128 channels and 256 channels. This is to show how performance is related to hidden state size. In
addition, we set up models with 2 and 3 layers of ConvLSTM networks. This is to show if a higher
level of abstraction can help improve the model performance for this task.

To train the model, we apply gradient clipping by norm. Because our model is predicting real number
values, having gradient clipping is important to prevent exploding gradient in case of encountering
outliers in the input or target values. We first train our models without gradient clipping and find that
after just one epoch, the tanh function gets saturated and all the cell states of ConvLSTM become
—1 or 1. By trying our different values, we find that norm clipping threshold of 10~5 and learning
rate of 0.01 are a good combination to train the model fast enough and prevent exploding gradient.

We also apply learning rate decay and early stopping. With experimentation, we decide to drop
learning rate to 0.001 after 5 epoch. We also keep track of dev set errors and stop training when dev
set error reaches the minimum to prevent overfitting.

5.3 Baseline Model

We use FC-LSTM to build our baseline model. In the baseline model, we first use one 3 x 3
convolution with stride 1 and one 5 x 5 convolution with stride 2 to reduce the input size. Then we
flatten the result into a vector and feed it to a 2-layer FC-LSTM with 2048-dimensional hidden states.
Finally, the model applies FC linear layers to the LSTM output to predict the weather grid and air
quality measures of the next timestamp.

5.4 Results

The final results are shown in Table 1, and the training and dev set loss curves are shown in Figure 4.
For the table, ConvLSTM 3x3-256-2 means using ConvLSTM with 3 x 3 filter, hidden state of 256
channels, and 2 layers. We can see that all ConvLSTM models significantly outperform FC-LSTM
model. In addition, ConvLSTM model with 1 x 1 filter performs worse than other ConvLSTM models.
This shows that being able to capture the spatial correlation within the data is important to achieve
good performance. But comparing to FC-LSTM, just by having much fewer parameters allows it to
be trained much faster and achieve significantly better performance. However, having larger than
3 x 3 filter and deeper than 2 layer network, in this case, do not improve the model performance.



We think this is because, for weather and air quality data, each cell in the tensor correlates mostly
just with cells next to it. Cells farther away do not provide much useful information. Therefore,
looking at a larger area or trying to abstract higher-level information cannot help the model achieve
better performance. Furthermore, having a larger filter and deeper network significantly increases
the number of parameters, which makes the model harder to train. Therefore, in our experiment, the
ConvLSTM 3x3-256-2 model performs the best in both test loss and the final SMAPE score, because
it is easier to train compared with larger models, but also more expressive than the model with 128
channels. Comparing our result to the KDD competition participants, although we do not have the
exact evaluation data used by the competition (the downloaded data used for forecasting has many
missing values and time stamps), SMAPE score around 3.7 ~ 3.9 range is still top tier performance.

Model Dev Loss | Test Loss | Test SMAPE | Num of Params
FC-LSTM-2048-2 0.71110 0.77009 0.45841 126315819
ConvLSTM 1x1-256-2 0.50785 0.60865 0.40018 1462033
ConvLSTM 3x3-256-2 0.46798 0.56391 0.36646 7843601
ConvLSTM 5x5-256-2 0.46131 0.56712 0.37865 20606737
ConvLSTM 3x3-256-3 0.47290 0.56988 0.38748 12564241
ConvLSTM 5x5-256-3 0.48175 0.57809 0.38135 33715985
ConvLSTM 3x3-128-2 0.47511 0.57423 0.37960 1988497

Table 1: Results and metrics for different models
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Figure 4: Training and dev losses of different models
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Figure 5: Prediction and Target Samples, for PM2.5 and O3 respectively

6 Conclusion and Future Work

In this paper, by using Convolutional LSTM network to leverage the spatiotemporal correlation
of weather and air quality data, we successfully build forecasting model to achieve high-level per-
formance compared to other machine learning approaches. With convolution operation instead of
full matrix multiplication used in FC-LSTM, ConvLSTM can be trained much faster and achieve
significant performance improvement. In addition, by comparing models with different hyperparame-
ters, the experiment shows that having an excessively large model can harm performance because
it makes the model harder to train and take a longer time to converge. For future work, we will
investigate combining ResNet architecture with RNN [15] to try to improve the performance over
long sequences. We will also try to add convolution and deconvolution layers before and after
the ConvLSTM component in our forecasting model, in order to leverage image super-resolution
methodologies and reduce computational cost.



7 Contributions

Shuo Sun: Worked on model ideas, model coding, data processing coding, data visualization, paper
writing, and poster design.

Gaoxiang Liu: Worked on model ideas, baseline model, data processing coding, data visualization,
and paper writing.
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