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Abstract

This paper asks: what if models of language were trained not by having them try
to predict the next word, but predict whether the phrase or sentence as a whole
was syntactically correct and made sense? How well would it perform, and what
language structures would it learn along the way?

To that end, we built RNNs to predict whether a sequence of words is a well-formed
English sentence. Our 2-layer word LSTM is 96% accurate at distinguishing valid
sentences from sequences of words randomly sampled from the corpus. We
analyzed its activations in search of learned structure representations and have
preliminary visualization results.

1 Introduction

If done right, we conjectured, the activation of the hidden state neurons in an RNN trained simply to
distinguish well-formed inputs from nonsense could capture different aspects of how human written
sentence are structured, without any explicit part of speech tagging or other labeling more granular
than a 0 or a 1 for the sequence as a whole. This motivated our creation of "gibberfish": RNNs that
learn to model language by "fishing for gibberish".

The input to our algorithm is a string of up to 30 English words. We process the string into a sequence
of lowercased inputs and use a LSTM recurrent neural network to output a prediction for whether the
sentence was real (1) or randomly generated (0).

2 Related work

What makes a sentence "sensical" or "nonsensical" is a debated topic in linguistics. From the linguistic
point of view, a nonsensical sentence refers to a sequence whose meaning cannot be interpreted by
reader. Fowler [1] believes that a "nonsense" string is very hard for a reader to do “retrieval of the
syntax of an utterance”. To automatically identify nonsensical sentences, recurrent neural networks
have been proven a great tool, particularly through modeling the relationship between words in a
sentence [2]. Zhang, etc. [3] developed an RNN model to capture the semantic relationships between
different words in a sentence, such as cause-effect, component-whole, etc. Based on Zhang’s model,
Wau [4] further improves the model, especially in over-fitting aspects, and applied the model to detect
the nonsense part of a sentence. In both Zhang and Wu’s model, words are represented by a word
embeddings [5], and an LSTM (long-short term memory) [6] model is applied. We used their work
as a starting point for choosing features and models.
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3 Dataset and Features

Our dataset consists of 100,927 strings, half positive examples in the form of short English phrases
and sentences from Tatoeba.org [8] and half negative examples ("invalid/nonsensical sentences")
produced by sampling sequences of words from the corpus at random according to their occurrence
frequency. All examples were lowercased to force the model to learn structure more interesting than
"these capitalized words shouldn’t appear in the middle of a sentence."

We had 99,080 (98.2%) examples in the train set, 184 (0.2%) in the dev set ! and 1663 (1.6%) in the
test set, each evenly split between positive and negative examples.

For our word models, we removed punctuation from each example, tokenized the strings by whites-
pace, and replaced each word with a 50-dimensional GloVe pre-trained word embedding to create the
input sequence. See 1 for the cost function the GloVe embeddings were pre-trained to minimize [5].
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(X;; denotes the number of times word j occurs in the context of word %, w; is word vector for j and
w; is the context word vector for i, b;, b; are the biases, and f (Xij) is a weighting function.)

The input sequence for our character models consisted of one-hot encodings of the characters in the
example.

Here are some examples from the dataset:

Input Label
the committee has not yet arrived at a decision 1
a policeman ran past
this necktie does not match my coat
ugly really a a bee as
the her and california ugly american if away failures then
and it day take something unless long of extreme

SOO -

4 Methods

4.1 Algorithms and Models

Our model sought to minimize the binary cross-entropy cost function 2,
M
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where y(7) is the ground truth label of the jth example and 77 is its predicted label.

To train model weights to minimize the loss, we used an Adam optimizer (short for "Adap-
tive Moment Estimation") [7], an extension of gradient descent. Adam uses exponentially weighted
running averages of the gradients to give the descent "momentum", and it uses exponentially
weighted averages of second moments to adapt the learning rates per parameter (so parameters that
receive few or small-sized updates learn faster, and parameters with extreme updates have the updates
damped).

We used long short-term memory (LSTM) layers, where each "block" combines hidden state vectors
from the previous and an input to produce a new hidden state vector. It uses the below "gate"

'The dev set was originally intended to be a larger proportion of the dataset, in order to provide more
granularity on our validation accuracy for hyperparameter tuning and model selection—but due to a file-naming
mix-up we caught after running tuned models on the test set, we were still using a 184-example dev set made for
debugging on our local computers. So 184 it was, and we will now both be more organized going forward about
syncing between machines.



computations to better remember activations across the sentence.

Input Gates: iy = o(Wyizy + Whihi—1 + Weic—1 + b;)
Forget Gates: f; = o(Wysxs + Whhi—1 + Weper—1 + by)
Cells: ¢; = frep—1 + i tanh(Weexy + Whehi—1 + be)
Output Gates: 0y = 0(Waoxt + Whohi—1 + Weoct—1 + bo)
Cell Outputs: hy = o, tanh ¢;

We added dropout layers to lower variance (tuned via hyperparameter search), and used a dense layer
with softmax activation at the end to output a classification value from the final hidden state (or the
average hidden state, or max, depending on whether the model used pooling of some kind).

4.2 Neuron Activation Analysis

We conducted a neuron activation analysis from one of our RNN models we trained: the 1 layer, 128
neuron LSTM layer with 0.5 dropout ratio. The analysis output a value for each word in the sentence
sequentially. The value of each word represents that given words sequence at current point, what
would be the possibility it is a 'making-sense’ sentence.

The neuron activation is modeled as Figure 1. For each word, an activation value, A;, is estimated
based on its corresponding 128-dimensional LSTM layer output by feeding them into the dense layer
and then a sigmoid layer as trained in the RNN model. The output of neuron activation analysis is a
number between [0,1], and it represents the neuron activation level for the sentence ends before the
current word.

An example of neuron visualization is in figure 2, with the activation level represented in color. The
green color represents the input sequence up to that point being predicted to be from the real-phrase
dataset, and the red color represents predicting the sequence to be nonsense; white is unsure. This
example sentence is a concatenation of a positive labeled sentence ("you always talk back to me’) and
a negative labeled sentence ("a we your’). From the figure, the color is more green at the first half
sentence, turns to red when there’s a preposition without an object, back to green when it gets its
preposition, and turns to red immediately thereafter as one might expect. This simply example shows
that the model has the potential to identify abnormalities when the sentence structure is wrong.
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Figure 1: The neuron activation analysis model

you always talk back to me I we -

Figure 2: An example of neuron activation analysis

5 Experiments/Results/Discussion

Our primary metric was accuracy: what percent of the predicted labels matched the ground truth
labels. We chose accuracy because the labels were binary, the test set had equal numbers of positive



and negative examples, and recall or precision weren’t as germane for our application as they are be
in domains like medical test evaluation.

To choice the optimal model, We ran hyperparameter tuning experiments on a small subset of the
training data over 20 epochs. We choose small dataset due to the limited computational power we
have.

Word model experiments

For the word model experiments we held all hyperparameters fixed but one to find the value of
the remaining parameter that maximized accuracy on the dev set, then used that value for that
hyperparameter when held fixed for subsequent experiments, with two exceptions: batch size and
Istm layers. (We realized that 1 layer model and smaller batches would do better given the relatively
small training set used for tuning)

#LSTM layers | state size | dropout | bidirectional | learning rate | batch size || dev accuracy
1 128 0.5 false 0.001 100 0.880
2 128 0.5 false 0.001 100 0.859
2 64 0.5 false 0.001 100 0.837
2 128 0.3 false 0.001 100 0.848
2 128 0.5 true 0.001 100 0.766
2 128 0.5 false 0.001 50 0.897
2 128 0.5 false 0.002 100 0.826

Character model experiments

For the character model model selection and tuning, we implemented global average pooling and
global max pooling layers that would work with masking (unlike Keras’s provided layers) and
included them in the experiments. For the below experiments we used a dropout of 0.2, batch size of
6, and state size of 128.

layers | r. dropout | bidirectional? | pooling | masking « dev acc

1 0.0 false none masked 0.001 0.652
1 0.0 false GAP unmasked | 0.001 0.815
1 0.2 false none masked 0.001 0.772
2 0.2 false none masked 0.001 0.766
1 0.2 false GAP masked 0.001 0.782
2 0.2 false GAP masked 0.001 0.804
1 0.2 true none masked 0.001 0.87

1 0.2 true none masked 0.0005 0.831
1 0.2 true GMP masked 0.001 0.72

After the hyperparameter tuning experiment, we chose four promising models to train on the entire
dataset, and recorded their training accuracy and test accuracy. All four models used 128-dimensional
hidden states, 0.5 dropout ratio, 0.001 learning rate and 100 minibatch size. The "fixed-length" model
had a fixed RNN length set to just over the max number of words in the dataset inputs, and the
others used masking to have just as many as was needed. The results are shown in Table below and
discussed more in the conclusions section.

With the best model (figure 3) trained on the entire dataset, we explored the relationship between
the size of the dataset and the training and validation accuracy. The results are shown shown in the
figure 4 — as the number of data point increases, the training and validation accuracy both improve,
indicating that variance is more likely a problem than bias and more data would help further.

Model \ Training error (m = 99,080) \ Test error (m = 1,663) |
Character LSTM 0.3% 8.0%
One-Layer Word LSTM 3.1% 5.54%
Two-Layer Word LSTM 3.2% 5.1%
Two-Layer Fixed-Length Word LSTM 0.65% 3.85%
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Figure 3: The final model
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Figure 4: Accuracy and the training data size

6 Conclusion/Future Work

As expected, the word models performed better than the character model, and two layers did better
than one. The first was likely thanks to the word embeddings and shorter sequence lengths to
“remember” across, and the second to two layers flagging or remembering "nonsensicality” better.

Contrary to our expectations, the fixed-length word LSTM outperformed the others. Its behavior was
rather mysterious and worth further analysis. Examining the outputs for inputs of different length, the
output would waver as input words were being processed, then dip down to close to 0 ("nonsense")
as pad words were read around the middle of the max length, then finally bounce back up to above
0.5 ("real") for positive examples or stay below it for negative examples within 5 cells of the end of
the model. It looked like the two layers were approximating a quadratic function of the input number
together.

We were unable to find legible correlations between input words and the activation patterns in the
hidden states. We found and examined the inputs that caused the greatest activation for each neuron,
but no pattern was found. With more time, we might go "[gibber]fishing" for representations by
looking for neurons with similar activations across a number of strategically chosen inputs that share
a common grammatical structure (or break from structure). We would also look at more of the
most-excitatory inputs per neuron, and analyze it in terms of activation for the given word instead of
after processing a whole sentence.

Part of the problem was that dropout may have made it less legible, since it would encourage
distributing representations across neurons instead of concentrating it in one that could get dropped
out.

One extension we would like to do is to do transfer learning on a dataset of slightly perturbed but
no-longer-valid input examples, to train a model to help make natural language data augmentation less
prone to mislabeling. Unlike in computer vision, data augmentation in natural language processing is
a bit risky and complicated, since perturbations that preserve the meaning and syntactic correctness



of one example may break correctness—or worse, change the meaning—when applied to a different
example. So being able to filter perturbed inputs would be quite valuable.

We would be careful to avoid confounds as to what the model is learning by having it either try to
detect changed meaning or broken syntax, rather than both at once. We might also turn the system
into a GAN, or add self-attention to be able to visualize which words were most affecting the output
(to see if any subsequences "disqualified" it from being real or "lent it validity" because it was unlikely
to appear at random).

7 Contributions

Bo: word level model hyperparameter tuning, weight analysis, activation visualization, literature
review lead, plots

Matthew: data pipline, word and character embedding, character level model hyperparameter tuning,
and model development

We both worked on the poster and final report.

Abhijeet Shenoi advised us on our project as a course assistant. Matthew’s colleague David Liu gave
us the idea that our project could be used to make data augmentation more reliable.
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