Learned Indices : Point Index
Rahul Palamuttam

Introduction

Recently Deep Learning techniques have shown to advance the state of the art in
tasks found commonly in Computer Vision, Natural Language Processing, and Speech
Recognition. Traditionally, Neural Network approximators have been applied to domains
outside of core computer systems. However, a recent paper “The Case for Learned
Index Structures” makes a case for how indexes are really models which can be
approximated by neural networks. Kraska et al. claims that because neural networks are
universal approximators they can learn properties of the data being indexed to improve
upon existing hashing schemes found in databases. The paper looks at how deep
learning can be applied to achieve greater hash table utilization when storing range
indices, point indices, and existence indices. An important point to note is that learned
indices do have their drawbacks. For example, while neural networks can approximate
the underlying cumulative distribution function the errors that commonly pop up in
shallow models are due to the fact that the CDF function of real world datasets are very
noisy upon closer inspection. So the authors employ a recursive index model to combat
this which is primarily inspired by how B-Trees are organized. Each layer of the model
essentially chooses which model-tree to use to compute the index.

Description of the dataset

NASA Web Server logs

We decided to utilize the an open dataset from NASA - it specifically consisted of two
traces containing two month’s worth of HTTP requests to the NASA Kennedy Space
Center. The logs have the following columns : host, timestamp, request, HTTP reply
code, and bytes in the reply. The log was collected starting on July 1 19995 upto August
31 1995. | decided to use this dataset as it was similar to the weblogs dataset that was
used in the original paper by Kraska et al. It also had the distinct property of having an
irregular cumulative distribution function. The figure below shows the CDF of the entire
14 million points in the dataset - at first glance it looks fairly easy to approximate with a
linear function. . T —

However, if we zoom in to a time range that is about 1 percent of the total span we see
that the CDF is highly irregular. Thus a linear model would achieve fairly poor
performance on the dataset.

Learned Indices : Point Index
Rahul Palamuttam

NASA Dataset Log Time CDF

d"-.

aaaaaaaaaa

For comparison, Kraska’s work utilized a dataset consisting of 200M web-server log
records, rows from the OpenStreetMap database, and a synthetically generated
lognormal dataset. The Weblogs dataset consisting of 200M log entry timestamps are
noted to be highly irregular while the longitude and latitude keys in the map dataset is
fairly linear with little irregularities.

Synthetic Datasets

Instead of utilizing a lognormal dataset, for debugging purposes | decided to create a
simple linear and quadratic dataset. That is | randomly sampled 14M points from a
linear function and quadratic function. Since the primary task at hand here is to
approximate irregular CDF’s | also randomly perturbed around 35% of the points in the
synthetic datasets.

Data cleaning and preprocessing

While the synthetic datasets did not really need any type of cleaning, the weblogs
dataset did. The dataset was stored in a csv file, which we read in using pandas. There
were missing timestamps for certain days which had to be cleared out. Like in the
original paper, we only wanted to deal with unique timestamps, so we had to filter out
duplicate timestamps.

Explanation of choices and decisions

Unlike traditional goals of a model learning from a training set and generalizing well on
a test set, the goals here were to literally memorize the training set in order to get
optimal hash table utilization. For this reason, after each epoch | evaluated the model
on the entire training set instead of having a separate test set.

Kraska et al. claims that the model itself trains in under an hour (minutes). However,
after replicating the model as close to the paper as possible (clearly they utilize many
more stages and more models per stage) the exact engineering effort to do this is
missing from the paper details. Furthermore, recent blog posts by authors of the paper
claim that there are missing details in the paper (such as what learning rate was used,
what kind of optimizer was used to train the recursive index model, and if other
architectures were tried). For this reason | stuck to solely utilizing the recursive index

Learned Indices : Point Index
Rahul Palamuttam

model and utilized the adam optimizer with a learning rate of 0.001. Due to the
computational challenges and lack of resources (even with a GPU) the recursive index
model was fairly extensive to strain with large values of k (the number of nets to train
per stage) and large values of | (the number of stages). For this reason | utilized a k
value of 2 with 2 stages.

Approach:

The first step was to mimic the neural network architecture presented in the paper on a
subset of the dataset and overfit. The baseline architecture is simple as it consists of
two hidden layers each of which is of size 32. The final output activation layer is of size
1. For the purposes of the milestone | decided to forgo the recursive model index loss
and used a simple sum-squared loss shown below.

Lo= Y (fola) - y)?

(z,y)

Kraska et al. makes an interesting choice in setting up the experiment with regards to
the number of hash slots (the labels) and the number of unique keys being hashed -
they are the same. In essence, the work on approximating point indices seems to solely
be devoted to learning a hash function that does a one-to-one remapping from the key
space to the index space. The hash table utilization is measured in terms of the number
of keys mapped successfully to a unique slot versus the total number of keys. It's
important to point out that for computing point index predictions the ground truth
indices are hand picked to range from 0 to the length of the dataset.

We use mini batch gradient descent with an entire epoch consisting of 500 steps and a
batch_size of 100. We use also use the Adam Optimizer initialized with a learning rate

of 0.1.

The finer details of processing the dataset involved ingesting the tsv file using pandas,
filtering out missing time stamps and manually generating index values as the labels.

Recursive Model Index

L = Z (fe(l.leZ—l(m)/NJ)(m) —y)? Lo = Z (fo(z) — y)?

(z,y) (z,y)

Learned Indices : Point Index
Rahul Palamuttam

The recursive index model is crucial part of the learned indices paper and the results of
the milestone show that this needs to be implemented. Here each layer consists of
several shallow networks. Each layer essentially computes the index of the network to
use in the following layer. As noted by Kraska et al. each of the models makes a
prediction about the general location of the key. The subsequently selected model is
then used to make a more localized prediction from the general location derived before
it. An interesting point to note is that the Learned Indices paper does not address
learning how many layers of models the network really needs nor do they adequately
distinguish the difference between this architecture and a conventional deep neural
network architecture.

Results, metrics and discussions

Data 1 Layer RMI
Weblog 10% 55%
Linear 65% 45%
Quad 45% 35%

The first experiment looked at a 1 layer neural network and its performance on learning
mappings for the weblog timestamps, and the linear and quadratic datasets. Due to the
irregular nature of the CDf in the NASA weblog dataset the 1 layer net could only
achieve 10% accuracy. Interestingly, the 1 layer net performed well on the synthetically
generated linear and quadratic datasets. Of course, it could not achieve 100 percent
accuracy since | randomly perturbed 35% of the points in the synthetic datasets.

The recursive index model as expected performed well in mapping the timestamps in
the weblog dataset. However, it is surprising that it was not able to achieve the results
shown in the paper by Kraska (which was claimed to be 100 % in the alternative
baselines section). | believe this is because of the limited range of k and |
hyperparameters | could play with when fine tuning the recursive index model. The
actual paper did use two stages in the RMI but used a k value of 10k. Furthermore, the
comparison is a slightly apples to oranges comparison in that their hash table
implementation is slightly different and doesn’t solely rely on a one to one mapping. The

Learned Indices : Point Index
Rahul Palamuttam

table used a separate chaining approach for every skipped item except and utilized the
remaining free slots with offsets as pointers.

Conclusion:

A crucial motivation of this work is the ability to improve the performance of real
world computer systems using deep learning. While the learned-indexes paper looked at
how it might be possible to approximate database indices with neural networks the
overlooked fact is that the the distribution of keys change with time. What's really
missing from a practical standpoint is the ability to online-learn the recursive model
index to support inserts and deletes. This is a crucial part of any real world index
structure which | hope to address towards the end of the project.

A strong case is made that neural networks could be used as index
approximators in databases. While the work was inspired by the idea that indexes are
really models, it could also be said that models are also indexes. By this reasoning we
should be able to handle deletes as an operation that “undoes” a gradient update for a
set of items being removed from the hashtable. Apart from asking the authors what
exactly their hyperparameters were, | think for learned indexes to be of practice use
there needs to be a way to account for inserts and deletes in a learned index model.
This could be a promising next research goal for subsequent work and could really push
the limits of conventional transaction workloads.

References and related work

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, Neoklis Polyzotis: The Case for
Learned Index Structures. SIGMOD Conference 2018: 489-504

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E.
Hinton, Jeff Dean: Outrageously Large Neural Networks: The Sparsely-Gated
Mixture-of-Experts Layer.

http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html

