Music Popularity Prediction via Techniques in Deep
Supervised Learning

Brian Rossi Mitch Pleus
Department of Computer Science Department of Electrical Engineering
Stanford University Stanford University
brossi@stanford.edu apleus@stanford.edu
Abstract

In this project, we tackled the complex problem of discerning popularity of a song
given its raw audio signal. This project is interesting because of its potential value
to an inherently subjective industry. With a dataset of 8,000 songs and metadata
including play counts for each song, our strategy was to preprocess audio files by
converting them into their respective frequency spectrogram images, and use a deep
convolutional neural network as a multi-class classifier to predict the audio files’
popularity via their associated spectrogram images. After experimentation with
different architectures and grid-search hyperparameter tuning, Our best-performing
model was an 8-layer CNN with RGB spectrogram inputs that performed with 61%
test accuracy, reaffirming suspicions of the ambitiousness and complexity of the
problem we chose to tackle.

1 Introduction

The problem we are investigating for this project is what makes a song popular? More specifically,
can we discern from a raw audio signal and its underlying characteristics whether or not a song will
be popular? This project is interesting because it provides a quantitative perspective on optimizing
an inherently subjective industry. Any insights into predicting the popularity of musical compo-
sitions would have high value-added applications in the music industry and advertising — such as
allowing artists and labels to know which singles to push, or whether or not to keep working on their
compositions.

Based on prior research into genre prediction (see "Related Work"), our approach was to convert
audio signals of songs into spectrogram images. We then labeled each image with an associated
popularity class (Low-Popularity, Medium-Popularity, or High-Popularity) based on the number of
listens each song had. This allowed us to feed the spectrograms directly into a deep, convolutional
neural network (Figure 1). Our input for each example was a scaled-down spectrogram image of size
102 x 159 x 3 (RGB images) or 102 x 159 x 1 (mono images) depending on the model architecture
we were testing. The final layer of our CNN contained a softmax output in order to predict into which
one of three popularity buckets each example fit. As such, our output for each example was a class
label — either high, medium, or low popularity — based on the number of listens / play count of the
example in question.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

\ |_» High popularity (36.5%)

OR CNN — Medium popularity (46.7%)
~

Low popularity: (16.8%)

Grayscale spectrogram

Figure 1: Inputs & Outputs. Inputs to our CNN consisted of either RGB or Grayscale spectrograms
depending on our model. Our output for each example was a class label — either high, medium, or
low popularity — from a softmax output.

2 Related work

A more well-researched problem than popularity prediction with more successful results is genre
classification. Some papers we referenced include Meza and Nalianya’s Music Genre Classification
Using Deep Learning[1] and O’Beirne and Zamora’s Music Genre Classification Using Mel Spec-
trogram Representations[2]. Both of these papers achieved their highest test accuracies (> 90%) by
using the methodology and architecture of converting song audio into mel-spectrograms and feeding
these spectrogram images as input into a deep CNN.

Related work on music popularity prediction includes Yang, Chou, etc.’s Problem of Audio-Based Hit
Song Prediction Using Convolutional Neural Networks[3] and Pham, Kyuak, and Park’s Predicting
Song Popularity [4]. The first paper converted audio into mel-spectrograms in order to train different
models including Logistic Regression, RNN’s and different flavors of CNN’s. In this paper, the
deeper CNN’s performed the best. The second paper used song metadata (key, loudness, mode, etc.)
as input to different methods such as Logistic Regression, Linear Discriminant Analysis, Support
Vector Machines, etc.

For our own project, we decided to convert raw audio into spectrograms as input to a CNN over
using song metadata as input for multiple reasons. First, there is documented high performance in
genre classification using this method, which is a similar application to ours, and documented higher
performance using CNN’s over RNN’s for the problem of popularity prediction. Second, thinking
ahead to applications of our project, raw audio files allowed us to create a model with more easily
constructed inputs — the thinking was if our model works to a reasonable degree, it would be easier to
convert and input new test songs rather than having to construct the input for each example based on
a complex metadata scheme. One of the datasets we found easy access to (and ended up using) is
the FMA dataset[5] which contained mp3 audio files for 100,000 songs, but coincidentally did not
have a robust set of metadata features. Third, using audio to predict popularity has not been hugely
successful in the past and could have groundbreaking applications to the music industry if solved.
Therefore, we decided to approach our project in the same fashion as Yang, Chou, etc.’s Problem
of Audio-Based Hit Song Prediction Using Convolutional Neural Networks[3] as they had a similar
objective and dataset format.

3 Dataset and Features

The dataset that we are using is the FMA: A Dataset for Music Analysis[5] which is a dataset of over
100,000 sounds (mp3 format) and their associated metadata. For our project (due to space and time
constraints), we are using only a subset of their data, namely, the fma-small dataset which includes

8,000 tracks of 30 seconds a piece. From this data and the associated metadata, we are able to match
each track to a listens count, which we used as our basis for labeling popularity.

Because our CNN is taking images (spectrograms) as input, there is a fair amount of data pre-
processing that must be done. After downloading all of the data, we had to convert all mp3 files to
.wav files, and then from .wav files to .png spectrograms (Figure 2). To compress the data, we cut
the spectrograms down to a random 10s sample from each 30s clip. We felt this was a reasonable
unit of time for a human to discern whether or not they liked the song i.e. predict popularity. We
also downsized the image from size [1005 x 306 x 3] to [102 x 159 x 3], and then converted our
spectrograms to grayscale to cut down computation and achieve reasonable training times for our
model (Note that we ended up training some models taking RGB input and some taking mono input).

We then decided to label our examples into 3 classes: low-popularity (16.8% of total dataset),
med-popularity (46.7% of total dataset), and high-popularity (36.5% of total dataset) based on each
example’s associated #listens count in its metadata. We decided to create these 3 buckets because
we believed it would be a more intuitive metric to evaluate how our model was doing vs. trying to
predict an actual listens score in the same format as our original dataset’s metadata.

Lastly, we split our dataset into an 80%, 10%, 10% split corresponding to train, validation, and test
datasets with the same distribution of popularity classes in each set.

A e
’M:} |

'10 second mp3 clip

las: Is f dataset!

High popularity (36.5%)

Medium popularity (46.7%)

Low popularity: (16.8%)

Grayscale spectrogram

Figure 2: Data preprocessing. For each example, we 1) randomly sampled 10 seconds from the given
30 second audio clip, 2) converted the audio clip to its RGB spectrogram, 3) downsized the image to
102 x 159 x 3, 4) converted to grayscale / mono, 5) bucketed its #listens metadata to find its associated
class label out of high, medium, and low popularity.

4 Methods

The four main models that we trained and tuned were a 4-Layer CNN with mono spectrogram input,
a 6-Layer CNN with mono spectrogram input, a 6-Layer CNN with RGB spectrogram input, and an
8-Layer CNN with RGB spectrogram input.

For each of our different models, we used a CNN with Adam Optimization and mini-batches. Each
convolutional layer had ReLLU activation functions and used batch normalization as well as a maxpool
layer. Our first FC layer used dropout so as to prevent overfitting and our output layer was a softmax
layer to predict one of three popularity classes.

For our cost function, we used the mean of the softmax cross entropy between the logits we computed

from our CNN and the true data labels.
M

= Yo * log(po,c)
c=1
M = 3 classes

y = true label
p = probability example ois of class c

5 Experiments/Results/Discussion

When training each of our models, we decided to tune learning rate, mini-batch size, and dropout rate.
We conducted a grid search strategy for our hyperparameter tuning. We conducted hyperparameter
tuning for each of our 4 main models.

We evaluated our models based on the train and test accuracies of the outputs. If the model outputted
the correct class (low, medium, or high popularity) for an example, then we would count that as a
correct prediction and an incorrect prediction otherwise. We chose to use this as our performance
metric because we believed it aligns potential evaluation of human performance on this task.

After training our earlier models (Figure 3), we noticed that we were underfitting. Our approach was
to see if deeper networks as well as incorporating RGB spectrograms as input instead of mono would
lead to higher training accuracies.

Accuracies
Architecture Training | Validation Test
%ﬁ;ﬂz’nﬂz’g 44% 41% 42%
‘gﬁ;"z’n};}ax)‘ 46% 51% 51%
4&%‘;‘&5’5‘;‘ 53% 55% 53%
6&%‘;“&5’5‘ 59% 63% 61%

Figure 3: Our models and their associated train, validation, and test accuracies.

This led to our best-performing model which was an 8-Layer CNN with RGB inputs (Figure 4). We
were able to achieve 61% test accuracy on this model and the associated tuned hyperparameters are
shown in figure 5.

102x159x 3

50X 77x32 Deep, 6 Convolutional Layer CNN with

RGB Spectrogram Inputs

24 x 36 x 64

11x17x 128

5x8x256

J 3x6x512
EN A 1x1x1024

Conv:
Conv: f=2x2;s=1
Conv: f=2x2s=1 Maxpool: FC layer w/ KSO"THHX
Conv: f=2x2;s=1 Maxpool: f=2x5;s=1 dropout ayertt
Conv: f=2x2;s=1 Maxpool: f= 222; e (512 uﬁits) L | gpopuranty
Maxpool: f=2x2;s=2 asses
f=2x2;s=2

Conv: f=3x5;5=1
f=3x5s=1 Maxpool:
Maxpool: f=2x2;s=2
f=2x2;s=2

Figure 4: Best performing 8-layer CNN dimensions and parameters, with 61% test accuracy. 6
convolutional layers, a fully connected layer with 512 units, and a softmax layer with 3 popularity
classes.

Hyperparameters for Best Model

Learning Rate Batch Size Dropout Rate
5e-4 16 0.4

Figure 5: Hyperparameter values for best performing model.

As seen by the results in figure 3, the more information we incorporated into the input and the deeper
we made the model, the better the performance. This is likely due to the complexity and subjectivity
of the task at hand. More complex inputs gave our network more information per example with which
to learn, and the deeper our network, the more expressive features it could extract from the data.

When we saw the model was underfitting, we capped our number epochs at 100 and focused more on
changing our model architecture to deeper networks with more expressive inputs. This is because we
saw the loss function and accuracy flatten out and deduced that our network wasn’t better learning
features from increasing the training time.

6 Conclusion/Future Work

From this project, we see that it is very difficult and ambitious task to predict the popularity of a song,
especially solely from the raw audio signal. In training our CNN, we battled against underfitting,
which is why in our later models, we moved to deeper networks and transitioned from mono input to
RGB input. This led us to our best-performing model which was an 8-layer CNN giving us a 61%
test accuracy.

Underfitting leads us to believe future models might benefit from more expressive information per
example in our dataset. In future work, it would be interesting to see if incorporating more discrete
metadata (e.g. artist popularity, genre, tempo, key, etc.) into our model would increase accuracy.
Though it was tough given the associated metadata of our dataset, using a more vanilla neural network
in parallel with our CNN analysis might provide more expressive input data, and consequently more
accurate results. Taking a larger sample of audio per example (vs. the 10s we used for this project)
could also lead to a higher prediction accuracy.

Spectrograms can theoretically glean harmonic and rhythmic information, but more in depth analysis
of different musical touchstones and characteristics could supplement future popularity predictors
(e.g. NLP analysis of lyrics).

7 Contributions

Both members have researched existing implementations and literature in order to plan the project.
Mitch was responsible for converting from original mp3’s to .wavs to spectrograms. Brian was
responsible for data collection as well as data formatting once spectrograms were computed and
hyperparameter tuning and analysis. Mitch performed majority of implementation of baseline CNN
models, developed while referencing the Tensorflow Tutorial from coursera as well as CNN starter
code provided by TA’s. Both members worked in conjunction to discuss ways of improving earlier
models and implementing deeper networks with RGB inputs.

References

[1] Meza, M. & Nlianya, J. (2018) Music Genre Classification Using Deep Learning.
[2] O’Bierne, A. & Zamora, A. (2018) Music Genre Classification Using Mel Spectrogram Representations.

[3] Yang, L. & Chou, S. & Liu, J. & Yang, Y. & Chen, Y. (2017) Revisiting the Problem of Audio-Based Hit
Song Prediction Using Convolutional Neural Networks.

[4] Pham, J. & Kyuak, E. & Park, E. (2015) Predicting Song Popularity.
[5] Defferrard, M. & Benzi, K. & Vandergheynst, P. & Bresson, X. (2017) FMA: A Dataset for Music Analysis.

