DJamBot: Music Generation with Music Theory and
Dynamics

Daniel Dore Joey Zou
ddore@stanford.edu zou91@stanford.edu

Abstract

We studied the problem of using deep learning to compose new music. Our model
produces polyphonic music with dynamics, mimicking human classical piano
performances. We use two separate neural networks to first generate a chord
progression, then generate notes to fit this progression.

1 Introduction

Music is a fascinating domain for innovation: it combines a deeply intuitive, creative process
with a large amount of mathematical theory and sophisticated technology. The possible domains
of application are endless and diverse, including such disparate domains as music classification,
synthesis of new sounds for electronic musicians, automatic transcription, and many more. We chose
to focus on the problem of Al-powered music composition. In popular culture, music composition is
a creative task that we think of as deeply human: in a poignant moment of 2001: A Space Odyssey,
HAL-9000 reflects some humanity by simply singing the children’s song “Daisy, Daisy.” It would
have been ludicrous in the 1960’s to dream of HAL-9000 writing his own swan song! Al music
generation could also be a vehicle to make the task of the human composer easier. For example, a
user could give the Al a melody, and it would return a 4-part harmony based on that melody.

Perhaps surprisingly, music generation turns out to be a task which is quite well-suited for Al. For
centuries, the primary means of communicating Western music has been through the musical score.
This document represents a piece of music as a sequence of precise notes, which can be thought of as
a pitch combined with a duration, as well as additional information indicating articulation, dynamics,
tempo, etc. This structure can be digitized in a variety of ways, turning a piece of music into some
sort of time-indexed sequence of pitches. A very common digital music representation is the MIDI
file. This is a standardized music representation which can be outputted directly from electronic
musical instruments and can also be synthesized and manipulated in a variety of commercial software.
MIDI represents a piece of music as a stream of note events: a note event can be the start or stop of a
note, and include the pitch, duration, and velocity (i.e. the volume) of the note.

Our model consists of two distinct neural networks. The first neural network predicts the next chord
in a chord progression, given the previous chords played. When generating music, this output is then
fed back into the model as input, so that we generate an entire chord progression. The second neural
network takes this chord progression, as well as the notes played previously, and predicts which notes
should be played at a given timestep. More precisely, at each timestep, our model outputs a vector of
probabilities, indicating which notes are to be played, and a vector of "velocities", indicating how
loud each note should be. When training our model, we build a dataset in this form by pre-processing
a set of MIDI files.

CS230: Deep Learning, Spring 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

2 Related work

e JamBot[1] generates polyphonic music by training two different models: one to learn chord
progression, and another that learns how to generate polyphony given a sequence of chord
progressions. Hence, the implementation involves training a chords model based on the
training data’s chords to create a model that can generate a sequence of chord progressions,
before then training a polyphony model that learns the various voices of a piece based on
the piece’s chord progression sequence. The JamBot implementation has the advantages of
being simple, able to accept MIDI files as training input, and able to produce polyphonic
music; however, it does not consider dynamics and hence produces an output with uniform
dynamics.

e DeepJ[2] generates polyphonic music with varying dynamics. Here, three outputs are
learned simultaneously by one model: play probability (the probability a given note is played
at a certain time), replay probability (the probability a played note is replayed immediately
after it ends), and dynamics. The replay probability is a technical detail needed to specify a
piece due to the usage of the “pianoroll” representation of data (see below for more details),
so a simplified way to view the model is that it produces note-playing probabilities and
corresponding velocities for dynamics. The model can also learn about different styles of
composers, provided the training data is tagged with composer information.

e Google Magenta[3] is a comprehensive music generation project with many different
models and implementations that take into account various musical aspects, each offering
different advantages and limitations. Two particular implementations we found were the
“improv_rnn” implementation, which generates melodic music given a choice of accom-
panying chords and hence can be seen as a simplified implementation of JamBot, and the
“performance_rnn” implementation, which produces polyphonic music that incorporates
dynamics.

e DeepBach([4] is a genre-specific music generator specialized in composing chorales in the
style of Bach. One novelty in their approach is the use of a data representation that allows for
the construction of entire harmonies at once, instead of generating the music sequentially.

In some sense, our project combines the implementations of JamBot and Deep] to create an imple-
mentation similar to that of the “performance_rnn” implementation of Magenta without requiring the
remaining framework of Magenta to run.

3 Dataset and Features

The popularity and versatility of the MIDI standard means that there are many online repositories
of MIDI files available. We concentrated on two particular databases. First, there is the Lakh MIDI
dataset [5], containing roughly 200,000 MIDI files representing a variety of genres, all scraped from
the internet. One drawback of this dataset is that since the files are from many different sources, their
quality is inconsistent: for example, some files might be lacking information on the velocity/volume
of notes entirely (e.g. many files might be from amateur transcriptions of popular songs, rather
than generated by an electronic instrument). Another drawback is that the files are from a number
of different genres, so training a music generation neural network on this dataset might result in a
stylistically agnostic performance. To address both of these drawbacks, we also looked at the Yamaha
E-piano Competition dataset[6]. This consists of approximately 1400 MIDI files, which are recorded
from expert performances of classical music on the piano. This means that they are all from the same
broad genre, and that they all have velocity annotations.

From this MIDI dataset, we preprocessed the data to turn each file into a more usable format. Here
we followed the approach of JamBot and used many of its preprocessing features, which includes
functions that normalize the tempo to 120 beats per minute and key signature to C major/minor, as
well as functions that compute histograms of notes played, which are useful for the chord progression
model. The JamBot paper then uses tools from the pretty_midi library[7] that converts the MIDI files
into what are called pianoroll arrays, which are two-dimensional binary arrays where the (n, t) entry
denotes whether note n is played at time ¢ or not (so its value is 0 if the note is not played, and 1
if it is played). Here the time can be discretized according to either eighth notes (4 time steps per
second given a 120 BPM tempo) or sixteenth notes (8 steps per second); we experimented with both

settings. This data representation is more amenable to feed in as inputs to a neural network than, say,
the original sequential format of MIDI files consisting of events that have to be decoded first. (Notice
this representation has the drawback that two repeated notes are indistinguishable from one held note,
since both cases are modeled as a note being played for two time steps. The DeepJ implementation
remedies this by introudcing a replay feature to distinguish between these two events; we have chosen
to ignore this issue for this project.) We modify this representation to allow for dynamics by allowing
the array values to take on any integer value between 0 and 127, representing the allowable velocity
values in MIDI files. For the purposes of training, we normalized the velocity values by dividing by
max_velocity = 127, and multiplying back during generation.

After preprocessing, we ended up with 360 usable modified pianoroll files (some files were unable to
be processed since they did not have a clear tempo or key signature, in which case the preprocessing
program ignored it when normalizing the tempo and key signatures). We split the files into 90% (or
324) for training and 10% (or 36) for testing.

4 Methods

We followed the approach of JamBot, which used recurrent neural networks (RNN) comprising
of long short-term memory units (LSTM for short). The specific implementation used two neural
networks, one to predict chord progression, and one to generate notes based on a generated chord
progression. Both of those networks used one LSTM (long layer followed by one dense (i.e. fully
connected) layer and one sigmoid activation layer, and the loss computed as a categorical cross-
entropy loss. Since we wanted to generate dynamics, which affects note generation but not chord
progression generation, we decided to keep the first network from JamBot as is and modify the second
network.

Since we want to predict both the notes played and the velocities of the played notes, we used a
custom loss function. We treated learning which notes to play as a series of binary classification
problems: is note n on or off? Thus, we used binary cross-entropy as the loss function for the
probability vector. For the velocities, this loss function is inappropriate, so we used mean-squared
error. However, using just mean-squared error results in poor performance, as it over-penalizes the
model for predicting non-zero velocities for notes which are “off”. Thus, following the approach in
the Deepl paper, we only include terms in the mean-squared error computation corresponding to
notes which are on:

2

1 i i i i
¥ |2 (e os(mig) + (1 = ik log(1 — ngy)))

K2

['(ntruea Tpred s Utrue Upred) =

(@) (,,(@) (@)

+ Nrue (Utrue - Upred) 2

i4= L

In addition to changing the loss function, we experimented with changing the architecture of the
note generation network, including using 2 LSTM layers instead of 1, adding dropout between the
LSTM/dense layers, and making the LSTM(s) bidirectional.

5 Experiments/Results/Discussion

Given the very human nature most would associate to music, the ideal method to evaluate a model
for music generation is to conduct a “Turing test” where participants listen to both an actual
song/performance and a model-generated output and decide which piece sounds more human-like
or desirable. However, despite experimenting with a variety of architectures, input representa-
tions/normalizations, and parameters, we have been unable to produce a model with all of our desired
features that produces meaningful music. Several of our models have produced very low probabilities
of playing any notes whatsoever, very low velocities, or music that sounds like a single note being
played.

In lieu of results we can evaluate, we instead look at the losses produced by the model as a replacement
metric for our models. Listed below are the results from three of the models we tested: one model
with the same architecture as JamBot (one LSTM plus one dense), and two models with two LSTM

Model | Epochs | Learning rate | Train error | Test error

1LST™ 25 1x107° 0.0323 0.0362
2LST™M 20 5x 1076 0.0394 0.0408
2 LSTM (+ bidir.) 25 5x 1076 0.0361 0.0374

Table 1: Table of models used

Training and Test Loss for 1 LSTM model
06
05
0.4
é 03
02

0.1

. =

0
1 3 5 7 911131517 1921232527 29 3133353739 41434547

Testing Epoch

e TraiN Set LOSS s Test Set Loss

Figure 1: Plot of training and test losses for the model with 1 LSTM layer

layers and 80% dropout layers following each LSTM layer, of which one model had bidirectional
LSTM layers and the other did not. While the output was not desirable, the models themselves
seemed to work as the loss functions converged nicely. Each model used 324 training files and 36 test
files, and each model used the Adam optimizer. Notice that in the first two models testing occurred
twice per epoch, while in the third model testing occurred once per epoch. On the AWS servers, each
model took between 15-20 minutes to train per epoch.

6 Conclusion/Future Work

In the end, we were unable to get our model to produce output that realistically sounded like music.
While we got nicely converging losses, the output wasn’t desirable: either very few notes were
played because either the probabilities or the velocities were predicted to be very low, or the music
produced did not deviate much from a constant note. We also tried using other neural network
architectures, such as using 2 LSTM layers and adding Dropouts in between, or changing the LSTMs

Training and Test Loss for 2 LSTM Model

0.35
03
0.25
0.2

Loss

0.15
0.1
0.05

0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Testing Epoch

@ Train Set LOSS e Test Set LOsS

Figure 2: Plot of training and test losses for the model with 2 LSTM layers (unidirectional)

Training and Test Set Loss for 2 LSTM Model
(Bidirectional)
025

0.2
0.15
0.1

0.05 S —

123 456 7 8 9101112131415161718 1920 2122232425

= Training Set Loss Test Set Loss

Figure 3: Plot of training and test losses for the model with 2 LSTM layers (bidirectional)

to be bi-directional, and the same things happened: while we got good losses, the actual outputs were
not good.

We suspect that there may just be an issue with the data processing part rather than the neural network
itself, since our models did train well, and the various versions of the architecture did not change the
output very much. Given more time, we would like to debug this a bit more and hopefully produce
music played with appropriate human-like dynamics.

One possible explanation for the poor performance is that the data we synthesized from the MIDI files
was sampled incorrectly, leading to input data where a majority of notes are silent. In order to produce
input for the chord-training model, the data-processing in the original JamBot implementation
manipulates the original MIDI files by "normalizing" them. This means that it first attempts to
determine the key and tempo of the input recording, and then normalize the tempo to a fixed value
and transpose the key to C. Then it attempts to assign a chord to each measure of music, which is
used as part of the input to the second LSTM. Our dataset primarily consisted of virtuosic piano
performances, so it is possible that the data processing classes were less able to determine a single
correct key/tempo or a single correct chord for each measure. If the tempo was incorrectly determined
to be much too fast, it is possible that we would have primarily sampled silence (i.e. a majority of
time steps would have no notes). However, the original JamBot model did train correctly on this
dataset, so this is not the entire problem.

For future work after resolving the current issues, we would like to consider adding an attention
mechanism to the LSTMs, to allow for more long-term structure considerations by the model.

7 Contributions

The two authors wrote separate sections of the final report and poster. Dan did most of the research
into existing implementations, and both authors contributed to the ideas behind this implementation.
Joey produced the majority of the plots and tested and evaluated most of the models, as well as
delivering the poster pitch. Dan and Joey wrote different parts of the code at different times.

Our code can be found on GitHub, at https://github.com/dorebell/DJamBot.

References

[1] Gino Brunner, Yuyi Wang, Roger Wattenhofer and Jonas Wiesendanger. “JamBot: Music Theory Aware
Chord Based Generation of Polyphonic Music with LSTMs.” https://github.com/brunnergino/JamBot

[2] Huanru Henry Mao, Taylor Shin and Garrison W. Cottrell. “Deepl: Style-Specific Music Generation.”
https://github.com/calclavia/DeepJ

[3] Magenta: Music and Art Generation with Machine Intelligence. https://magenta.tensorflow.org/,
https://github.com/tensorflow/magenta

[4] Gaétan Hadjeres, Francois Pachet, Frank Nielsen. “DeepBach: a Steerable Model for Bach chorales
generation”. ICML 2017.https://github.com/Ghadjeres/DeepBach

[5] Colin Raffel. “Learning-Based Methods for Comparing Sequences, with Applications to Audio-to-MIDI
Alignment and Matching”. PhD Thesis, 2016. http://colinraffel.com/projects/lmd/

[6] Yamaha Piano E-Competition, http://www.piano-e-competition.com/

[7] Colin Raffel and Daniel P. W. Ellis. Intuitive Analysis, Creation and Manipulation of MIDI Data with
pretty_midi. In Proceedings of the 15th International Conference on Music Information Retrieval Late Breaking
and Demo Papers, 2014. https://github.com/craffel/pretty-midi

[8] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané,
Mike Schuster, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[9] Chollet, Francois et al.. Keras. 2015. https://keras.io

