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Abstract

We present a new three-dimensional (3D) convolutional neural network (CNN)
framework to classify seismic facies from 3D seismic data. The new CNN architec-
ture implements a variant of the LeNet-5 design, and improves training accuracies
significantly in the early training stage. A sparse sampling scheme to preprocess
input data is introduced to improve the computational speed and maintain a desir-
able receptive field. The new CNN design in combined with the sparse sampling
scheme reduces the training time by more than 50%, and achieves a test accuracy
of 0.9977. The current 3D CNN-based approach proves to be very promising in
making geologically reasonable and consistent predictions for seismic facies.

1 Introduction

The increasing availability of three-dimensional (3D) seismic data demands a workflow for automatic
seismic facies classification. Traditionally, the seismic facies interpretation and classification are
made by geoscientists. In addition to the tremendous amount of time involved in classifying 3D
seismic volumes, the quality of the results is often less controlled due to the variation in geoscientists’
experiences. A convolutional neural network (CNN) based procedure that automatically learns
and extracts useful features from 3D seismic volumes, and consequently makes seismic facies
classification can significantly reduce the human labor and uncertainties, thereby accelerating decision-
making time.

2 Related work

A few recent works have attempted to automate the seismic facies classification using CNN. Waldeland
and Solberg (2017) presented a binary classification algorithm for salt dome detection by classifying
each pixel using its surrounding 3D seismic information. Ildstad and Bormann (2017) extended
Waldeland and Solberg (2017)’s strategy by making multi-class seismic facies predictions using
similar input data formats and CNN architectures. Our project bases on the "MalenoV" repository
and labeled data created by Waldeland and Solberg (2017), and aims to further improve the prediction
accuracy and computational speed.

3 Dataset

The 3D seismic dataset for the current work is obtained from a publicly available seismic survey of
the Netherlands offshore F3 block (dGB Earth Sciences B.V., 1987). The 3D seismic cube (data) is a
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Figure 1: Labeled pixels on the inline 339 section.

3D volume of size 651 x 951 x 452 in the inline, xline, and time dimensions, respectively. As shown
in Figure 1, Ildstad and Bormann (2017) labeled 9 classes (8 seismic facies + 1 background class) on
pixels from the inline 339 section, which is a two-dimensional (2D) slice. The inline 339 section
is 951 x 452, with a total of 140,111 labeled data points. The training, validation, and test sets are
prepared in a way such that each sample is a 3D sub-cube of size 65 x 65 x 65 with the central voxel
(pixel) belonging to one of the labeled pixels in the inline 339 section.

4 Methods

4.1 New CNN design: the modified LeNet-5

We made major improvement on the CNN architecture based on Ildstad and Bormann (2017)’s CNN
design. The original CNN architecture was fairly crude: four of the five convolutional layers used
the same filter design, which is a 50-channel 3 x 3 x 3 filter; no max-pooling layers were included.
The new CNN architecture we redesigned, as shown in Figure 2, is a variant of the LeNet-5 named
"the modified LeNet-5". The new design incorporated the overarching concept that the number of
channels of filters should increase while the filter size should decrease as the layers go deeper. Two
max-pooling layers were added in order to enhance local features; the dimension of the filter tensors
in the original LeNet-5 was increased by 1 so that 3D convolution can be performed on the input
sub-cubes. The new CNN design demonstrates significant improvement in the loss reduction and
training accuracy gains in the early training stage; the results are analyzed in details in the "Results
and Discussion" section.

4.2 Input data preprocessing: sparse sampling

When generating sub-cubes for the input data, we implemented a feature that sparsely samples from
the raw seismic cube at a specified step size to preprocess the input data. Initially, the 65 x 65 x 65
sub-cubes were generated by continuously sampling around the labeled central voxels. The sparse
sampling scheme improves the computational speed by reducing the sub-cube size. Figure 3 shows
the comparison between the continuous sampling scheme, and the sparse sampling scheme at a step
size of 2 in each dimension, resulting in a sub-cube of size 33 x 33 x 33. The new sub-cube essentially
keeps the same receptive field as the old 65 x 65 x 65 sub-cube, but the data size is reduced by a
factor of 8. When the input data size is not an issue, the sparse sampling scheme also enables storing
more spatial information, potentially improving the prediction accuracy for large-scale features.

5 Results and Discussion

We tested four models using different CNN models and parameters. In all the cases, 40,000 training,
10,000 validation and 10,000 test samples were randomly drawn without replacement from 141,111
total data points. Because only a few epochs were trained, a fixed learning rate of 0.001 was used
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Figure 2: The modified LeNet-5 3D CNN architecture.
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Figure 3: Illustrations of sampling schemes. Left: the original continuous sampling scheme and the
resulting sub-cube of size 65 X 65 x 65; right: the sparse sampling scheme around the labeled central
voxel in red at a step size of 2 along each dimension and the resulting sub-cube of size 33 x 33 x 33.

except for the base case, where it was initially set to an adaptive learning rate. A cross-entropy
loss was defined, and an Adam optimizer was used to perform the stochastic gradient descent. The
mini-batch size was set to 32 for size 65 x 65 x 65 sub-cubes, and 128 for size 33 x 33 x 33 sub-cubes.
Two epochs were trained in each case. All the training and predicting processes were run on the
Stanford CEES GPU cluster with 8 Nvidia Tesla K80 GPUs.

The losses and accuracies are plotted as a function of the mini-batch number in Figure 4. In the
legend, the "base" model refers to the old CNN architecture and parameters used in Ildstad and
Bormann (2017); the "new" models refer to the modified LeNet-5 architecture shown in Figure 2; the
"65" and "33" refer to the lengths of each dimension in the sub-cubes; the "1" and "2" refer to the
step sizes used in sampling from the raw seismic volume. As shown in Figure 4 (a) and (b), the new
CNN design demonstrates a significant improvement in the performance in the early training stage:
the loss decreases more quickly, and the training accuracy increases more rapidly within the first few
mini-batches. The use of a new CNN architecture is even more advantageous when the computational
power is limited: the training accuracy can achieve more than 0.9 within 100 mini-batches, whereas
it needs over 1,000 mini-batches in the base case.

Table 1 compares the performance metrics of the above four models. The "Base" model uses the
old CNN design and an adaptive learning rate, and gives a test accuracy of 0.9855 at the end of
the second epoch. Although the accuracy is fairly high after two epochs, the early training stage
performance, as shown in Figure 4, is not satisfactory due to its CNN design and the initial learning
rate setup. The "New 1" model, which uses the new CNN design, shows significant improvement in
the performance in the early training stage in Figure 4, but suffers from a much slower training time
due to a bigger CNN architecture. The "New 2" and "New 3" models kept the new CNN design, but
used smaller input sub-cubes. The reduction of the input data size effectively reduces the the training
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Figure 4: Losses (a) and training accuracies (b) plotted against the mini-batch number for four CNN
models. The mini-batch number is plotted in the normal scale in (a), and in the logarithmic scale in

(b).

time by more than 50%, and achieves higher computational efficiency. Finally, comparing the original
continuous sampling scheme in the "New 2" model with the sparse sampling scheme at a step size of
2 in the "New 3" model, we observe that the sparse sampling scheme results in higher validation and
test accuracies because it allows for a deeper receptive field. In summary, the new CNN design in
combined with the sparse sampling scheme is the best model for seismic facies classification in the
current study.

As a verification, we made seismic facies predictions on the entire inline 339 section using the trained
"New-3" model. Figure 5 shows the comparison between the labeled data and predicted results. We
observe very good match between the labels and predictions, verifying a test accuracy of more than
0.99. We further made predictions on two xline 2D sections where labels are not available. Figure 6
shows the classified results on xline 450 and 610 sections. The top plots show the raw seismic
sections, and the bottom plots show the classified results. We observe good agreement in the seismic
facies sequence between the xline 450 and 610 sections; the "salt" facies, which are usually present
inside antiforms in nature, were labeled within expected regions in both sections. We conclude that
the CNN model is able to generate geologically reasonable and consistent predictions.

6 Conclusion

In conclusion, we found that the 3D CNN framework is very promising in making geologically
reasonable and consistent predictions for seismic facies from 3D seismic data. The new CNN design
significantly improves training accuracies in the early training stage. The "New-3" model, which
combines the new CNN design and the sparse sampling scheme, reduces the training time by more
than 50%, and achieves a test accuracy of 0.9977, making itself the best CNN model in the current
study.

7 Contribution

We modified around 200-300 out of 1554 lines of code of the "MalenoV" repository, mostly in
changing the CNN design, implementing the sparse sampling scheme, adding callbacks for monitoring
training progress, and modifying the visualization functions. We also wrote around 100 lines of
code in a separate file to process and visualize data. Wei was primarily in charge of designing and
implementing the new CNN architecture and the sparse sampling scheme; he also helped with testing
models and visualization. Iris was primarily in charge of testing models, setting up and running
GPUs, processing and visualizing data, and write-ups.



Table 1: Performance metrics of four CNN models. New 3 was considered the best model because of
its high accuracies and computational efficiency.

Mini-

Moidel (S:lllltt; Step bz}tch # of para. Rl:inrgéng Train’g acc.  Val. acc. Test acc.
. size  size
size
Base 65 1 32 297,697 7minl6s 0.9736 0.9857 0.9855
New 1l 65 1 32 8,478,817  29min28s 0.9974 0.9854 0.9853
New?2 33 1 128 522,337 167s 0.9959 0.9488 0.9455
New3 33 2 128 522,337 187s 0.9990 0.9961 0.9977
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Figure 5: Labeled data (left) and predicted results (right) on the same inline 339 2D section. The
"New-3" model was used for predictions.
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Figure 6: Raw seismic data (top) and prediction results (bottom) using the New 3 model on xline 450
(left) and xline 610 (right) seismic sections.
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