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Abstract

Given the addictive properties of opioid medications, they are not recommended after the
immediate recovery period following surgery. However, approximately 20% of patients
undergoing lumbar fusion meet criteria for “chronic opioid use” more than 3 months after
surgery [1]. Despite growing awareness about the opioid epidemic sweeping the US, we
do not have currently any way to predict which patients will continue taking opioids for
prolonged periods of time following surgery. In this project, we attempted to predict which
patients were at risk for continued opioid usage after 3 months following lumbar fusion using
administrative healthcare data. After conversion of diagnosis codes into their corresponding
300-dimensional encodings, an alternative training dataset was also created using principal
components analysis (PCA) to reduce the dimensionality of these encodings into their most
informative two dimensions. Ultimately, our model was able to achieve similar predictive
accuracy on these two datasets, with AUCs of 0.725 and 0.728 for the raw encodings and
dimensionality-reduced datasets, respective. This network performed as well or better than
logistic regression (AUC = (0.721) and random forest (AUC = 0.724) classifiers trained on the
same dataset.

1 Introduction

The opioid epidemic has garnered increasing attention in the past few years, in both the news media and the
medical literature (Haffajee et al., 2017; Nelson et al., 2015; Compton et al., 2016). Between 2000 and 2009, the
number of outpatient prescriptions for opioids doubled (Governale et al., 2010), accompanied by a parallel rise
in overdoses. Opioid related overdose deaths increased 200% between 2000 and 2014 (Rudd et al., 2016),
reaching an all-time high of 33,091 in 2015, marking a four-fold increase compared to 1999 (O’Donnell et al.,
2017). By 2015, opioids accounted for 63% of all fatal drug overdoses in the United States, with approximately
half of these involving prescription opioids (Rudd et al., 2016). Although opioids play a useful role when it
comes to control of postoperative or cancer-related pain, even prescription opioid use under the supervision of a
physician has been associated with increased risk for opioid use disorders. A patient who receives a prescription
for opioid medication is thought to have anywhere up to a 122-fold increase in the risk of the opioid abuse or
dependence compared to one who has never received an opioid prescription (Edlund et al., 2014). Even though
opioids are not recommended for chronic pain, the medical use of opioids is unfortunately common in patients
with low back pain. As of 2015, opioids were the most common class of drugs prescribed for this condition
(Deyo et al., 2015). For patients with particularly severe structural disease, lumbar fusion can occasionally help
alleviate the need for these addictive medications. However, surgery is not a perfect fix, and approximately 20%
of patients undergoing lumbar fusion meet criteria for “chronic opioid use” more than 3 months after surgery
(O’Connell et al., 2017). Despite growing awareness about the opioid epidemic sweeping the United States, we
do not have any way to know which patients will continue taking opioids for a prolonged period following

surgery.



In this project, we attempted to predict which patients were at risk for continued opioid usage more than 3
months following lumbar fusion using only administrative healthcare data which would be available before
surgery and could if accurate help guide physician decisions.

2 Related work

Successes with deep learning in the medical domain have been largely restricted to imaging (Gulshan et al.,
2016; Zhang et al., 2015; Rajpurkar et al., 2017). A variety of characteristics of medical data have hindered the
success of deep learning in the medical domain, including the lack of standardization of electronic medical
records between hospitals, HIPAA privacy laws preventing open-source access to data, and the diverse way
information is stored in clinical notes. With the growing popularity of sequence models and advancements in
natural language processing, deep learning has begun to experience greater success in healthcare fields outside
of imaging. Nguyen et al. (2017) used a convolutional neural network to capture both time-dependent and
independent aspects of medical records and capture local clinical motifs to stratify patient risk. A combination
of both supervised and unsupervised layers in the form of a Restricted Boltzmann Machine has also been
applied to ICU data, out-performing both support vector machine and gradient boosted machine models when it
came to predicting 28-day mortality (Du et al., 2016).

However, in the case of more structured data (i.e. administrative data collected by healthcare insurance agencies
with predefined features), neural networks have generally not been able to outperform support vector machine
(SVM) or random forest approaches (Eskidere et al., 2012; Dinov et al., 2016). This is likely because much of
the richness of structured healthcare data lies in the ICD-9 (now ICD-10 as of 2017) diagnosis codes assigned to
each patient, which present multiple problems to machine learning algorithms. First, there are varying numbers
of ICD-9 codes associated with each patient and inconsistent code usage between physicians. Second, there are
13,000 ICD-9 codes (and a full 68,000 in the updated version of this system, the ICD-10). Although there is
some biological relatedness between many ICD-9 codes, there is no innate structure to the ways these diagnosis
codes are organized. For example, there are 12 different ICD-9 codes that correspond to some sort of stroke,
and yet no current way to link related biological concepts to each other except a manual search and literature
review. With the lack of structure in the way this data is encoded, it is unsurprising that much of the deep
learning research in the non-imaging healthcare domain data has gone into discovering useful representations of
these codes. In 2016, Choi et al. (2017) used over 4 million electronic healthcare records to identify concept
embeddings of ICD-9 codes from administrative claims data. These encodings mapped the ICD-9 codes into
300-dimensional space in which related codes were near each other in terms of Euclidean distance. These
encodings better represent medical relatedness compared to ICD-9 codes in a way that is more easily
interpretable by machine learning algorithms.

One exception to the relatively disappointing performance of neural networks compared to RF and SVM was
work done by Jamei et al. (2017), who used a shallow network (two dense fully connected layers) and was able
to slightly outperform random forest (validation AUC of 0.78 vs. 0.77) when predicting unplanned hospital
readmissions within 30 days. However, they were assisted by predefined categories that were automatically
computed by the Sutter Health Electronic Medical Record System and therefore did not need to perform any
other post-processing on patients’ associated ICD-9 codes. Given their success with a relatively shallow
network, our team decided to determine whether a similarly shallow neural network could outperform other
methods with the addition of diagnosis encodings identified by Choi et al. (2017).

3 Dataset and Features

Inclusion criteria: The final dataset consisted of 140,848 patients enrolled in employer-provided health
insurance plans with data collected by the Truven MarketScan database. These patients underwent lumbar
fusion between 2007 and 2013, and were enrolled in their health insurance plan for at least 6 months prior to
surgery and at least 1 year following surgery to ensure adequate follow-up.



Predictors: Our dataset included information on patient demographic factors (age, sex, geographic location), as
well as a variety of relevant comorbidities that had been pre-computed based on ICD-9 and CPT codes present
in other linked databases in the months preceding surgery (Table 1). The pre-defined categorical geographic
variables in this dataset (i.e. state) were augmented by a computed longitude and latitude value for each patient,
calculated based on the center of the patient’s metropolitan statistical area. Geographic location as a
combination of continuous numeric variables was desired to have a more flexible way of capturing hotspots of
opioid use in the United States, as these usage patterns do not necessarily follow state or zip code borders.
Preoperative prescription drug information (including opioid usage and amount, as well as other psychotropic
drugs) was extracted from a linked pharmacy database using a summation of each patient’s prescriptions in the
six months prior to surgery. Each prescription was converted to the milligram morphine equivalents (MMEs)
using the conversion table provided by the CDC (CDC.gov).

Diagnosis code processing: In addition to the preprocessed comorbidities extracted from previous visits, our
dataset also contained up to 15 ICD-9 codes per patient representing diagnoses associated with the hospital
admission in which the patient underwent their surgery. To determine whether this information would help our
predictive model, we generated two different datasets and compared predictive results between the models
trained on these two datasets. First, we selected the "primary diagnosis" for each patient and substituted the 300-
dimensional encodings of medical entities published by Choi et al. (2016). Given that only a subset of these
learned encodings were present in our dataset, we also generated a second dataset which utilized PCA to reduce
the feature space of the encodings of each patient’s top two diagnoses from 300 dimensions each to 2
dimensions each (selected based on the two principal components that captured the most variability of all
encodings in our dataset). A second neural network was trained on this "Principal Components" input data
which substituted these four features (two per diagnosis code) in place of the patient’s primary ICD-9 code.

Finally, numerical variables were scaled to a mean of zero and a standard deviation of one. Variables that were
factors were converted into one-hot
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architecture was selected based work by Jamei et al. (2017), who found that a shallow fully connected network
was able to outperform a random forest classifier in predicting 30-day hospital readmissions. Because there is
no "gold standard" for this classification that allows us to quantify Bayes’ error, we chose to compare our neural
network prediction to four different existing methods. First, we developed a simple classifier that predicted
continued postoperative usage for every patient who had non-zero opioid usage in the 6 months prior to surgery.
We next trained the logistic regression, random forest, and SVM classifiers using all features of the principal
components dataset and evaluated their accuracy on the test set. Random forests and SVM were tuned using a
variety of different hyperparameters and the best-performing method was selected. In the case of the SVM,
computational limitations prevented us from training the classifier on the entire dataset, and therefore the
training dataset had to be limited to 50,000 patients.



5 Experiments

Since the search space for a deep-learned network is extremely large we decided on a tiered strategy to find an
optimal model. First, we focused on finding a suitable architecture, then we tuned hyperparameters of the
model in order (learning rate, batch size, 1.2 regularization, and dropout). Our initial search used the full 300-
dimensional encoding version of our dataset.

Architecture: We began by setting reasonable default hyperparameters for FC networks and variations of
architecture. We focused our search on networks that had N nodes in the first hidden layer and N*2 in
subsequent hidden layers. Supplemental Table 1 of the Appendix lists select variations of layer number (L) and
nodes/layers (N) that were evaluated along with training and dev results. Figure 1 shows how the selected
architecture was ultimately able to fit the training set over many epochs of training. Three hidden layers of
500/1000/1000 nodes per layer was sufficient to fit our dataset.

Network architecture experiments
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Hyperparameters: Given that dev set accuracy was very sensitive to changes in learning rate, this was the first
hyperparameter we chose to tune. Figure 3 shows how our accuracy during training was dramatically impacted
by learning rate. We chose the highest learning rate that was stable (i.e. the loss did not begin to diverge) which
for our model and dataset was 1.0 x10-3. For batch size, our goal was to find the most computationally efficient
batch size that delivered good accuracy. We found that a batch size of 8192 worked well on our GPU
accelerated training. Per epoch training time was very fast, and the accuracy per epoch was nearly identical to
lower batch sizes (Supplemental Table 2).

Finally, we focused on overfitting. We evaluated 1.2 regularization and varying levels of dropout and found that
a dropout rate of 0.5 produced our best result. As expected during our sensitivity testing, we found that our
training accuracy declined significantly as we increased dropout. Unfortunately, our best model was still only
able to predict 72% on our dev set. Figure 2 shows the impact of dropout on our training and dev accuracy over
epoch.

Our final model architecture is shown in Figure 4 which we ran with learning rate of 1.0 x1073, batch size of
8192 and dropout of 0.5. For the Principal Components dataset, the same process was repeated with almost
identical behavior. The optimal architectures were the same between datasets, with the only difference between
hyperparameter selection being the choice of a dropout rate of 0.45 for the Principal Components dataset.
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6 Results/Discussion
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identifying patients who would not continue their opioid
use (recall of 0.833-0.841 for the neural networks versus 0.711 for the random forest).

7 Conclusions/Future Work
Overall, our neural network was able to slightly outperform existing methods predicting which patients would
continue to use opioids more than 3 months after lumbar fusion.

Future work: Given time and computational constraints, we used a pre-processed form of the MarketScan
database which had only one row per subject that contained information on comorbidities of interest in the year
prior to surgery. However, the raw form of this database contains hundreds of rows per subject across multiple
sub-databases (one for pharmacy information, another for outpatient visits, and another for inpatient hospital
stays). To take advantage of the time series nature of this data, exploring a more complex recurrent network that
can consider multiple patient visits as sequence data of varying lengths could be a potentially interesting
approach. Although deep learning has not consistently outperformed other methods when it comes to structured
health record data, semi-supervised approaches (including Restricted Boltzmann Machines, or RBMs) have
shown some promise in making predictions based on healthcare record data from the intensive care unit. Further
exploration of unsupervised learning approaches to data preprocessing, such as the unsupervised input of
diagnosis codes into a RBM, would have been of great interest. Finally, training the network on two separate
training datasets stratified by preoperative opioid usage could be an interesting next step, as there may be a
clinical difference between patients who initiate opioids with surgery and are unable to stop versus patients for
whom surgery is unable to alleviate a pre-existing opioid use habit.



8 Contributions

Thomas: Majority of the code writing and training. Ran hyperparameter tuning due to exceedingly helpful
personal computational resources, Experiments section of final write-up.

Felipe: Wrote code for tuning architecture (loop through hyperparameters, train the model and save the results
for each combination to a csv file, summary script generation (read csv files of each run and merge them to
have only one table for comparing different runs), created a representative fake dataset that can be uploaded to
GitHub.

Chloe: Initial idea generation and dataset procurement, dataset merging and cleaning (this part only was for
another project), opioid use endpoint generation (had to be changed from previous opioid use endpoint that was
in the data based on patients’ prescription habits), data normalization and imputation of missing fields,
latitude/longitude computation based on MSA or zip code, encodings substitution for [CD-9 codes and
subsequent PCA, comparison methods, calculation of AUC/precision/recall for all methods, AUC figure
generation, wrote up all sections of paper except experiments section.
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10 Appendix

Here we present selected hyperparameter tuning results for both datasets. For full hyperparameter tuning results,
see our Github.

Supplemental Table 1: Hyperparameter tuning (Encodings Dataset)

g Dropout . Layer Training Training Dev
Learning Rate Rate Batch Size Nodes (N) i . Dev Loss Seciiey A
0001 045 8192 250 1 0461 0586 0.782 0718
0.001 045 8192 250 2 0451 0.604 0.79 0.707
0.001 045 8192 250 3 0454 0597 0.793 0713
0.001 045 8192 300 1 0449 0.602 0.787 0.709
0.001 045 8192 300 2 0441 061 0.796 0.708
0.001 045 8192 300 3 0442 0.602 08 0712
0.001 045 8192 400 1 0427 0619 0.801 0.708
0.001 045 8192 400 2 0418 0.622 0.808 0.707
0001 045 8192 400 3 0421 0619 0.807 0.707
0.0001 05 8192 250 3 0556 0.558 0.727 0.726
0.001 05 8192 250 3 0531 0561 0.752 0.724
001 05 8192 250 3 0586 0.588 072 0718
1.00E-05 05 8192 250 3 0594 0592 0.707 0711
0.001 05 1024 250 3 0503 0.568 0.766 0.721
0.001 05 128 250 3 0512 0567 0.758 0.725
0.001 05 2048 250 3 0499 0568 0771 0719
0.001 05 256 250 3 0.507 0.568 0.761 0.721
0.001 05 4096 250 3 0505 0567 0.764 0.724
0.001 05 512 250 3 0.502 0.566 0.763 072
0.001 05 8192 250 3 0529 0561 075 0.725
0.001 03 8192 1000 0 0.361 0.659 0.85 0.684
0.001 03 8192 1000 1 0.168 1123 0931 0.681
0.001 03 8192 1000 2 0223 1454 0.883 0.663
0.001 03 8192 2000 0 0304 0.695 0.879 0.684
0.001 03 8192 2000 1 0.113 1333 0955 0.668
0.001 03 8192 2000 2 0.058 1.142 0984 0.682
0.001 03 8192 250 5 0.288 0.824 0.881 0.683
0.001 03 8192 250 6 0303 0.779 0.876 0.685
0.001 03 8192 250 i/ 0324 0773 0.867 0679
0001 03 8192 3000 0 0257 073 0906 0677
0.001 03 8192 3000 1 0.084 137 0972 0671
0.001 03 8192 3000 2 0.045 1211 0991 0673
0001 03 8192 500 0 0406 0.637 0.822 0.687
0.001 03 8192 500 1 0254 0876 0.892 0.691
0.001 03 8192 500 2 0.196 0976 0918 0.682
0.001 03 8192 500 5 0.179 0962 0951 0.637
0.001 03 8192 500 6 0.167 0962 0953 0.647
0001 03 8192 500 7 0.155 0967 0951 0.661
0.001 05 8192 1000 0 0.388 0.627 0.834 0.698
0.001 05 8192 1000 1 0.176 107 0923 0.685
0001 05 8192 1000 2 0.171 1315 0917 0681
0001 05 8192 2000 0 032 0671 0871 0.688
0.001 05 8192 2000 1 007 1207 0982 0677
0.001 05 8192 2000 2 0.153 1.375 0929 0.685
0.001 0.5 8192 300 6 0.5 0.632 0.802 0.668




Supplemental Table 2: Learning rate selection (Principal Components Dataset)

Epochs  Learning rate  Dropoutrate L2 Regularization  Batch size Nodes Layers  Training loss Dev loss Training  Dev accuracy
100 1.00E-02 0 0 8192 500 3 8.814 8.771 45% 46%
100 1.00E-03 0 0 8192 500 3 0215 1.745 91% 63%
100 1.00E-04 0 0 8192 500 3 0.404 0.677 82% 68%
100 1.00E-05 0 0 8192 500 3 0.546 0.554 73% 73%
100 1.00E-06 0 0 8192 500 3 0.562 0.561 72% 72%
100 1.00E-07 0 0 8192 500 3 0.663 0.662 64% 64%

Supplemental Table 3: Network architecture selection (Principal Components Dataset)

Nodes Layers Training Accuracy Dev Accuracy
100 1 75% 72%
100 2 77% 70%
100 3 80% 69%
200 1 78% 70%
200 2 82% 68%
200 3 85% 64%
300 1 80% 68%
300 2 89% 66%
300 3 97% 66%
400 1 83% 68%
400 2 89% 66%
400 3 97% 65%
500 1 85% 68%
500 2 92% 67%
500 3 98% 66%
600 1 84% 68%
600 2 92% 67%
600 3 98% 65%







