Application of Deep Learning Techniques For Drilling Predictions

Ouassim Khebzegga'

Abstract— We apply deep Recurrent Neural Network to
predict hydrocarbon well’s drilling states (drilling/non-drilling
time) based on a set of measurements collected on a drilling
rig during operations. We use a series of LSTM models with
a softmax output layer to identify a rig state based on a
combination of 9 signals (torque, RPM, hook-load, weight on
bit,...). Our work aims at automating this classification as it
is at the core of drilling performance evaluation and is still
largely carried out manually by drilling engineer.

I. INTRODUCTION

Drilling is at the core of hydrocarbon resources produc-
tion. It is the most capital intensive and riskiest process in the
development of an oilfield. Modern wells extend beyond tens
of thousand of feet under the surface at extreme pressures
and temperatures. In spite of these conditions, modern wells
can now be drilled in a few days. Advances in the industry
are mostly driven by the very high cost of operations. These
can go from a few tens of thousands of dollars per day
for onshore factory wells to over a million dollars per
day for the most complex offshore wells. The goal of this
work is to automate the identification of the well’s drilling
states (drilling/non-drilling time) using sensors data collected
during the drilling process. This identification is at the core
of performance analysis performed daily by operators across
the US. Over the recent years, engineers have managed to
drastically reduce the overall time/cost of drilling a well.
They have managed to do so by thorough monitoring of each
sequences occurring during the drilling process. The current
work uses the data collected by an operator in the US over
the past 4 years on a set of 25 wells in two unconventional
basins. Various sensors were installed at the surface and
down-hole to track the state of the drilling bits with high
resolution (up to 100 Hz) and accuracy. Quantities such
as torque, rotations per minute, weight on bit, hook-load,
pressures and flow rate are primarily used to inform drilling
engineers on the state of operations. A trained eye can easily
distinguish in what state the rig is based on the raw signal
captured by its monitoring system. We present an approach
to automate this classification in order to speed up the overall
performance diagnostic of a well.

II. PROBLEM STATEMENT

Formally, the well’s status prediction goal is a multivariate
time series, two-class classification task. The input data is
a 130 (or 68) time series representing the measurements
of different sensors during the drilling process. We have a
total of 25 wells. The goal is to use a subset of the 130

LPhD Candidate, Department of Energy Resources Engineering at Stan-
ford

measurements to predict the states of the drilling process,
basically we want to know for each time step what is the
current state bases on the previously measured data. The
LSTM type of RNN’s is the most adequate neural network
architecture for this type of problems.

III. DATA

The dataset is composed of sensors’ measurements for
25 wells, The frequency of the measurements is 100Hz,
and the drilling process can last for few days. For each
well, the data is in the form of a table where the columns
represent the features and the rows represent time steps. The
table contains millions of rows due to the high frequency
of the measurements. A total of 7 out of 25 wells have 130
features and the remaining 18 wells have 68 features. Not
all these features represent sensors measurements, some of
them are recalculated using the sensors measurements. Due
to the use of different service providers for the well drilling
(different phases), there is redundancy in some of the sensors
measurements. Also, the size of the data is subsequent (2
TB), composed of relatively huge single files, which makes
the operations of data loading, handling and saving very
challenging, and resulted in the allocation of an important
amount of time to the cleaning and processing of the raw
data, this part will be presented in the following subsections:

A. Data Cleaning

First, we needed to identify the most relevant features to
our task, so we had to define a standard for the importance
of each feature and this resulted in the elimination of :

1) Redundant features: as we explained previously,
some of the measurements represented the same phys-
ical property (ex. torque) but were carried out by
different drilling service providers which resulted in
different names for the same feature.

2) Calculated features: these features are calculated
taking as input the data from the sensors (genuine fea-
tures). These calculations were realized by the drilling
engineers, and despite the added value we preferred to
remove them as we were not sure if these calculated
measurements will always be present in future dataset
and we wanted our model to generalize well to future
data.

Fig.1 shows a classification of the features into: sensors
features (genuine), redundant features and calculated fea-
tures. We can see that the fraction of the sensors features
of interest for us is only 60%.

Fig. 1.

Distribution of the input features

B. Data Smoothing

The frequency of the measurements is relatively high,
which resulted in the time series to be very noisy, so in
order for us to prepare them for the training phase we had
to apply:

1) Filtering: using an averaging sliding window of 100
time step we smoothed the data, this resulted in a
relatively smooth data without compromising its vari-
ations. The choice of 100 time step was specifically
held because it averages over a second which is the
smallest time step of interest for us.

2) Re-sampling: based on the smoothed time series we
re-sampled the data by taking a measure each 100 time
steps, this resulted in a subsequent reduction of the
dataset size. Fig.2 shows a comparison between the
initial and the smoothed data for a Tri-axial accelera-
tion feature.

3) Time to Depth Conversion: in geoscience subsurface
applications, we generally care more about the depth of
the measured data rather than the time it was taken, this
is because subsurface depth gives important insights
into the measured data, many physical properties like
the pressure, temperature, and density change gradu-
ally with depth. So we converted the time series to
depth series.

IV. LITERATURE REVIEW

Application of novel deep learning techniques to the
drilling activities in the oil and gas industry is relatively
new and there is few works to illustrate it. Some works
applied (NLP) techniques to analyze drilling reports [1],
they presented a methodology for automatic classification
of sentences written in drilling reports into three labels
(EVENT, SYMPTOM and ACTION). [2] compared different
classifiers to predict the wells states, their focus was on
the traditional machine learning algorithms (kNN, SVM,
LDA, Random Forest, AdaBoostM2, RUSBoost), and they
showed that the RF, AdaBoostM2 and RUSBoost achieved
the highest performance on real-time detection of operational

drilling states. In this work we will be applying (LSTM)
neural network architecture, proposed by [3] to address one
of the most prevailing weaknesses in RNNs which is the
gradient decay, it has been proven very powerful in the
handling of sequence type data (speech, time series ...).

V. MODEL

In this section we present our first model and the results of
the training, dev and test phases, we will start by explaining
the splitting strategy of the data:

A. Data Splitting

We changed our approach since the milestone phase,
instead of training on each well separately we concatenated
all the wells processed data into a single dataset, the reason is
that our model performed poorly with the previous approach
as it was not seeing the entire dataset at each epoch. The
processed dataset has 3422464 samples. Combining the
data this way helped mitigate the data imbalance issue,
with the largest class been Drilling, this is because the
ratio % is higher in average (0.4181) than it
is for the wells we used previously for training. To create
the time series for each sample, we used a sliding window.
The time series widow is characterized by its width, which
refers to the number of previous time steps we include in
the definition of the current time step series, for example if
w = 4, the time series for step " is {¢"73,¢" =2 "1 "},
This parameter w is the second input for the LSTM network
in the Keras framework (m,w,9). We also shuffled the
data before splitting it into train/dev/test. The data splitting
between the train/dev/test sets was respectively 90%/5%/5%.

For the input features we selected 9 of the dataset columns
representing measurements conducted at the top of the well
(Flow in, Hold depth, Bit depth, Pressure, Torque, Hook load,
Block, Surface RPM, Surface Weight on bit).

B. Model Architecture

The base model is composed of two LSTM layers, two
dropout layers and a softmax output layer, we used a
softmax layer instead of a sigmoid to be able to use our
model for multiclass classification as well (cf. Section VI-
D). Sometimes, we added a Time distributed layer just
before the output layer. The first LSTM layer is stateful and
composed of 48 neurons, the second has the same number
of neurons but it is stateless. the input data is 3D array of
dimensions (m = 3422464, w = 3,9). This base model has
been modified to create a variety of models by changing
the number of neurons, the optimizer, enabling/disabling
dropout and tweaking the optimizer parameters. Fig.3 shows
the structure of the base model and Table I gives its detailed
configuration:

Below we find a description of each of the models we
used for our comparison:
« Base Model: LSTM - 2 Layers (48x48) , with dropout
and Rmsprop optimizer

13

Original Data
Smoothed Data

23:59:30 00:00:00
Apr 7, 2017

Fig. 2. Comparison between the smoothed and Original data

c 12
O
o
k>
!
<
E
7
23:58:30 23:59:00
Apr 6, 2017
Time
TABLE I
BASE MODEL
Property Value
LSTM Network Base Model
Nodes layer 1 48
Nodes layer 2 48
Dropout 0.2
Optimizer Rmsprop
Model Type LSTM Stateless
Batch Size 64
Test Split [%] 5
Dev. Split [%] 5
Sliding Window Width | 2
9
Dropout2: 0.2
- o o E0-ES-E3-- E3
DBropoutl: 0.2 [Dropout | [Dropout | | Dropout |
LSTM1: 48 units cll — # # #

Input layer x<3> <n>

X

Fig. 3. LSTM Base Model Architecture

e Model2: LSTM - 2 Layers (36x12) , with dropout and
Rmsprop optimizer (different parameters)

e Model3: LSTM - 2 Layers (64x64) , with dropout and
Rmsprop optimizer (different parameters)

e Model4: LSTM - 2 Layers (48x48) , no-dropout and
Adam optimizer.

VI. RESULTS
A. Training

The models were trained for a total of 50 epochs, with
a batch size of 64 elements. Both Adam and Rmsprop
optimization algorithms were used with the cross entropy
loss function. Fig.4 shows the training loss, the accuracy
and the F1 score for the train/dev sets. As we can see both
the accuracy and the F1 score were high (close to 1) and we
will see in the next section that our model generalizes very
well to the test set.

If we compare the four models we can see that Model 3
which is the largest has performed better than the others,
and Model 4 with the Adam optimizer and without the
dropout was the worst performance. We suspect that the
absence of the dropout had a negative impact on the models
training and we are still investigating that.

Table II shows a detailed picture of the performance
of the different models. We see also that in terms of the F1
score, both for the train and dev sets, model 3 outperformed
the other models, next we will use this model both on the
test set and during the hyperparameters tuning.

B. Test

The test phase was designed in a way to validate our model
(model 3) on unseen data from the same distribution as the

==| STM-36x12-Dropout-Rmsprop
=== STM-64x64-Dropout-Rmsprop

LSTM-48x48-Dropout-Rmsprop
===| STM-48x48-no-Dropout-Adam

Train Accuracy
o
o ©
© (&)

o
o
o

©
o

epochs

==| STM-36x12-Dropout-Rmsprop
== STM-64x64-Dropout-Rmsprop

LSTM-48x48-Dropout-Rmsprop
==| STM-48x48-no-Dropout-Adam

epochs

Fig. 4. Training/Dev results

TABLE I
METRICS COMPARISON

Train Dev
Model Loss Acc. F1 Loss Acc. F1
Base Model | 0.0929 | 0.9651 | 0.965 0.0781 | 0.97 0.9701
Model 2 0.1092 | 0.9585 | 0.9586 | 0.0946 | 0.9641 | 0.9641
Model 3 0.0886 | 0.9666 | 0.966 0.0748 | 0.9712 | 0.9713
Model 4 0.2711 | 0.8957 | 0.8959 | 0.2659 | 0.8978 | 0.8965
TABLE I

BEST MODEL-TEST METRICS

Test
Model Loss Acc. F1
Model 3 | 0.0781 | 0.9701 | 0.97

dev/test sets. The ratio non-Drilling/Drilling time for the test
set is 0.4202, a value that is very close to what we got for the
entire dataset which is 0.4181. The accuracy was calculated
using Eq.1

I,
Accutest = E Z 1{y = y} ey

The results obtained are shown in table III, as we observe
our model has a very good accuracy with the test set as well,
Fig. 5 shows the confusion matrix for the test case and we
see that the model identifies the two classes Drilling/non-
Drilling very well with less than 2% of the test samples
misclassified, despite that our data is relatively imbalanced.

C. Parameters Tuning

A significant part of the tuning has already been presented
in the comparison of the models, as each model includes a
unique set of parameters (# of neurons per layer, optimizer
parameters, dropout inclusion). In this section we will focus
on the results we obtained for other parameters, mainly the
time series window width and the batch size. The results are
presented in Fig.6 and 7 we get very similar accuracy results
that are close to our model 3 performance of 0.9701. We see

- 100000

Drilling - 119007
80000
©
Q
©
° 60000
=
=
40000
Non-Drilling
20000
<O O
N N
&
Predicted label
Fig. 5. Confusion Matrix for 2 Class Classification - Test Results

also that increasing the batch size has always improved the
accuracy, while the time series window gets better results in
the case of w = 6 compared to w = 3 then the accuracy
drops when we increase w to w = 10, this is probably
due to the time length dependence between the successive
measurements, a window of w = 10 means that the sensor
measure at the current time step is impacted by a time
frame of 10 seconds before it, this correlation will definitely
decrease as we increase the time frame length, we plan to
test on longer time frames when we improve our model input
data streaming, as we encountered some challenges relaters
to memory limitations (increasing w by one value increases
by (m x 9) the size of our input data which imposed some
limitation in terms of memory).

D. Other Results

Aside from classifying the samples into the two classes
Drilling/ Non-Drilling, we also looked at their sub-classes
to see if we can use the same model to predict them. Fig.8
shows the subdivision of the Non-Drilling parent class into
its sub-classes Pull out/ Descent/ Surface. The accuracy of
the classification was as good as in the case of tow classes,

‘—window 3 =—window 6 ——window 10

o
©
5

Train Accuracy
L=]
©

o
®
O

=
®

10 20 30 40 50
epochs

Validation Accuracy
o o
o o ©
(4§ © (8]

e
®

‘—window 3 =window 6

window 10

Fig. 6. Hyper parameters Tuning Using different window width

|—batch 64 —nbatch 128 —batch 256
! A 1
509]
S I | |
=] | | |
8 1 | [A
R A R
= i i i
= : ; :
Fossf-——-- Rt SRR e
- : . : .
0 10 20 30 40 50
epochs
Fig. 7.

but when we looked into the the predicted classes it was
evident that the imbalance in the input data had led to the
mixing of some classes. Fig.9 shows the confusion matrix
for the 4 classes Drilling/Pull out/ Descent/ Surface and we
can see clearly that the two classes Pull out/ Descent are not
well separated, further exploration should be done to separate
them using weighted classes for example.

Drilling

Fig. 8.

Pull Out

Descent Surface

Hierarchy of Predicted Properties

VII. CONCLUSION AND FUTURE WORK

LSTM networks were able to predict the overall drilling
state based on the interpretation of raw real-time data. This
introductory work sets the path for a more refined analysis
following a similar approach.

o Human level accuracy for the prediction of Drilling/
non-Drilling states
o Models with large window and batch sizes give the best
results despite requiring the longest time to train. There

Validation Accuracy
o o
o o ©
[$)] © (3]

o
®

epochs

Hyper parameters Tuning Using different batch size

Drilling - 119007

Pull Out

True label

Descent

Surface

10 20 30 40 50
epochs
f—batch 64 =—batch 128 —batch 256
T 1 T 1
E S R =
0 10 20 30 40 50

- 100000

80000

60000

40000

20000

X
& o

X
&
& &
o QQ\\ & 3

Predicted label

Fig. 9. Confusion Matrix for 4 Class Classification - Test Results

is a trade off in terms of Training time/ Accuracy.
Accuracy is not the best metric to measure the perfor-
mance of the Multi-class model (Drilling/ Pull out/ De-
cent/ Surface) as the data becomes imbalanced. Further
exploration should lead to improve the classification
accuracy of minority classes (Pull out/ Trip In)

The results of this first classification can be used as an
input to the more challenging 12 sub-classes exercise.

(1]

[2]

3]

REFERENCES

J. Hoffimann al, Sequence Mining and Pattern Analysis in Drilling,
arXiv:1712.01476v1 [cs.CL] 5 Dec 2017 Reports with Deep Natural
Language Processing

G.V. Veres al. Data Analytics for Drilling Operational States Classi-
fications, ESANN 2015 proceedings. Bruges (Belgium), 22-24 April
2015

S. Hochreiter, Long Short-Term Memory, Neural Computation
9(8):17351780, 1997.

