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Abstract

In this project, we wanted to build a tool to segment MRI brain scans into four parts:
non-tumor, whole tumor, tumor core, and enhancing tumor core. We started by
taking a pre-existing model, which attempted to solve the problem by chaining
together three cascaded neural networks, each doing one step of the segmentation.
We ran two experiments on this model. First, we added an extra layer to each neural
network. Secondly, we experimented with the model performance by using a
weighted cross-entropy loss function instead of the dice loss function that was
originally used. Neither experiment resulted in higher performance.

1. Introduction

Brain tumor segmentation is an important task in the modern healthcare world.
Tumor segmentation provides doctors with the level of specificity they need to
properly treat patients. Trained radiologists usually do this task. In our project, we
wanted to build a tool that could do the same work with a high degree of accuracy,
to hopefully provide a blueprint for a radiologist to then double check, expediting
the process and making the task more efficient. We started with a pre-trained model
built for this task, and then augmented it to try to improve performance. The model
consists of three cascaded neural networks. The first one takes as input multi-modal
3D volumes of a patient’s brain, and uses a series of Convolutional Neural Networks
(CNNs) to output a mask of the whole tumor. The second network inputs a cropped
region around the tumor and uses CNNs to output a mask of the tumor core. The
third network inputs a cropped region around the tumor core, and uses CNNs to
output a mask of the segmented enhancing tumor core. In training, the cropped
regions are taken from the ground truth data, but in testing the cropped regions are
set based on the predictions of the previous network.

2. Related Work

The literature is extensive on brain tumor segmentation, due in part to the
popularity of artificial intelligence for healthcare as a research topic, as well as the
prevalence of large-scale data science competitions with these topics. There are a
wide variety of ways people have attempted to build models. The majority of
current approaches are either generative or discriminative. The generative
approaches show the probabilistic distributions of tumor and healthy tissue
appearances, and are good at generalizing to unseen images. They rely on previous
knowledge of what a healthy brain looks like and apply that to tumorous brains to
spot the differences. This type of approach is outlined in “A Generative Model for
Brain Tumor Segmentation in Multi-Modal Images” (Menze et. al). Discriminative
approaches, on the other hand, try to learn the relationship between image



intensities and tissue classes. These models directly learn differences between
lesions and other tissues, rather than relying on spatial priors. Discriminative
models have done this through the extraction of low-level image features, which
includes raw pixel values (Havaei et al.), Gabor filterbanks (Subbanna et al.) or
alignment-based features (N.Tustison and Avants, 2013). However, these models
generally require large amounts of data. Recently, discriminative models have
become the state-of-the-art standards. One of the most well-known models in this
space is the U-Net, which uses convolutions similar to the model we chose
(Abdulkadir, et al.). However, U-Net inputs 3D images, whereas the model we used
inputted 2D images, and trained each view (sagittal, axial, coronal), separately,
before putting them all together in the end. This strategy allows for a lot of memory
to be saved, as well as speeding up the testing.

3. Dataset and Features

We used a dataset from the 2017 Tumor Segmentation (BraTS) Challenges, held at
the International Conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI). The training dataset consisted of 285 3D multimodal brain
scans that contained either low-grade gliomas (LGG) or high-grade gliomas (HGG).
Out of the 285 brains, 210 contained HGGs and 75 contained LGGSs. We then tested
the model on a validation set of 45 brains, also provided by the BraTS challenge.
Each brain scan consisted of five slices each from the coronal, sagittal, and axial
views. The 2D receptive fields for the first, second, and third networks are 217x217,
217x217,and 113x113, respectively.

Example of a slice from axial view



4. Methods

The first and second neural networks used four sequential layers, each with two
blocks made up of two 3x3x1 convolutional layers, a Batch Norm layer, and a PReLU
layer, followed by a 1x1x3 convolution output channel and a 2D downsampling
layer. After the first chunk, each convolution output layer was followed by a 3x3x1
convolution output channel with 2D upsampling. The third network uses the same
architecture, but with less upsampling, because of the smaller input size(just a
tumor core, not an entire brain). This all can be seen in the picture below. This
model makes use of residual connections, an architecture that makes the image
more manageable to learn from by lowering the resolution of an image as it is
passed through the layer, and then raising it back up, rather than crunching the
image to a lower size.

As background, convolutional neural networks use convolutions to extract features
from images. Convolutions are grids that weight pixels differently based on their
placement. CNNs pass the convolution over the input, multiplying the convolution
by the input step by step, outputting a grid with a size dependent on the size and
stride of the convolution. They usually identify lines at first, and as the image
progresses through the network, can identify more complex features. Batch Norm
normalizes each input, using trained parameters to determine how much
normalization is needed. PReLu is an output function, similar to Leaky ReLu, except
that the coefficient of leakage is itself a trained parameter.
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In our added layer experiment, we changed every networks size to be five identical
blocks, not four, as stated before. In our second experiment, we changed our loss



function from a dice loss function:
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5. Experiments/Results/Discussion

Our first experiment was adding an extra layer to each of the neural networks. We
expected this to help with the later stages of the segmentation, the tumor core and
enhancing tumor core segments, because the extra layer would theoretically be able
to pick up more complex features in the images it was inputted. However, this was
not the case. The new model actually did much worse on these two tasks, relative to
the original model 9as seen in appendix). We believe this is because the extra layer
ended up forcing the model to overfit to the training set. The new model had a
higher training accuracy, but a lower test accuracy.

Next, we ran an experiment to see whether a change in loss function would help the
model. When we trained with dice coefficient loss, the model had a tough time
converging, so we decided to try to train with weighted cross entropy loss, which we
know is easier to backpropagate. We also lowered the learning rate and raised the
learning rate decay, to help the backpropagation converge. While we were right, and
the gradient converged much faster, training with the new loss function ended up
leading to worse results (as seen in appendix). We are not precisely sure what the
reason was for the change in performance. We know that dice loss performs better
on class imbalanced datasets, but ours is not class imbalanced, because all of the
brains in our training set have tumors. Therefore, we believe that the results may
have happened by chance, and not specifically motivated by a reason we can
diagnose. Indeed, the qualitative results look roughly similar to the naked eye.

6. Conclusion/Future Work

We took a pre-existing deep learning model for brain tumor segmentation, and ran
some experiments on it to see if we could improve its performance. We added an
extra layer to each of the neural network, and we changed the loss function used in
training, as well as the learning rate and learning decay rate. Neither experiment
resulted in better performance. For the added layer model, we believe this is
because the extra layer caused the model to overfit to the training set. If we had
more time, we would try to attach a fourth neural network to the output of the
model, and use it to try to predict patient survival rates from tumor scans and some
other key variables, like patient age. When we tried it here, we were unable to get
results better than random. We think that as the BraTS competition progresses, and
more data is released, we might be able to be more successful at this last task.
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Appendix/Figures

Mean Accuracy Benchmarks for Each Model

Dice_ET Dice_WT \ Dice_TC Sensitivity_ET  Sensitivity WT  Sensitivity_TC
Original 0.75761 0.89899 0.83502 0.78272 0.9221 0.82967
Added Layer 0.70386 0.86193 0.70802 0.80848 0.89627 0.86119
New Loss 0.73527 0.88759 0.73865 0.71132 0.89701 0.76053
Function

Specificity  Specificity_ | Specificity = Hausdorff95 Hausdorff95_ Hausdorff95_TC

_ET WT _TC _ET WT
Original 0.99823 0.99377 0.99789 3.78315 5.72536 7.25928
Added Layer 0.99798 0.99266 0.99192 8.03155 22.60405 12.03764
New Loss 0.99887 0.99344 0.99659 5.05962 5.93903 10.41551
Function
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