) CS230

Strongly-lensed quasar selection based on both
multi-band tabular data

Ji Won Park
Department of Physics
Stanford University
jwp@stanford.edu

Abstract

This paper presents deep neural networks (DNNs) applied to the binary classifica-
tion problem of separating lensed quasar systems from everything else in a severely
class-unbalanced, sparse dataset consisting of various multi-band properties mea-
sured over time. Several network architectures were attempted, including a shallow
1D convolutional neural network (CNN), long short-term memory (LSTM), 2D
CNN, and an LSTM autoencoder simultaneously trained with the softmax classifier
from the bottleneck layer. The autoencoder performed the best, achieving a final
validation accuracy of 86%.

1 Introduction

Quasars are regions of high luminosity hosted at the centers of some galaxies. When a distant quasar
is aligned closely with a foreground object such as a galaxy, the light from the quasar becomes
gravitationally bent, in effect creating multiple images of the quasar as viewed from the Earth, as
illustrated in Figure 1. This phenomenon is called strong gravitational lensing and we say that the
quasar is (gravitationally) lensed. We also refer to the foreground object simply as a lens, and the
aggregate system consisting of the lens and the quasar images as a lensed system.

Galaxy Gravitational Lens

Figure 1: Illustration of a gravitationally lensed quasar. (Cornell Astrophysics, 2018)

Lensed quasars invite a host of cosmological applications. Most relevantly for this paper, however, the
quasars can be used in what’s called “time delay cosmography” (Treu, Marshall 2016). Monitoring
the light curves, or the flux over some period of time, of a lensed quasar allows us to measure the
time delay from the arrival of one quasar image to another. The time delays, in turn, can be used to
constrain our measurement of the Hubble constant (H).

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

This endeavor requires a significant sample of lensed quasars, and suffers from the challenge that
lensed quasars are very rare and difficult to find. The upcoming large-scale astronomical survey,
called the Large Synoptic Survey Telescope (LSST), is predicted to detect billions of objects during
its decade-long operation starting in year 2022. Of these, only around 8,000 will be lensed quasars
(Gavazzi et al., 2014). Thus the challenge can be framed as a binary classification, i.e. lensed quasar
systems (positive) vs. everything else (negative), of a severely class-unbalanced dataset. The LSST
releases what is called a source table which stores important properties — such as shape, size, and
brightness in five wavelength bands — of each observed object at various points in time.

The experiments introduced in this paper is part of an ongoing tools development for the LSST data
analysis (Park, 2018a) All the network architectures attempted accept as input a time sequence of
properties measured from an object and classifies the object as a lensed quasar system or not. Each
object had 128 time slices of 55 properties (11 properties measured in 5 wavelength bands). The
properties were hand-picked from a larger set of properties in the LSST source table.

It should be noted that this project is only an initial attempt at a method for classifying quasars based
on multivariate time series data. LSST source tables are not yet available, as the telescope won’t see
light until 2022. Before beginning the deep learning portion of this project, I first had to complete
the development of SLRealizer, a framework which emulates an LSST source table (Park, 2018b).
Then I used SLRealizer to realize two mock LSST source tables, one consisting of lensed quasars
and another of regular galaxies. Only then were the two source tables combined and processed to
make an input for our DNNs. Thus any success of this method must be interpreted with caution, as I
had control over both the data generation and model-training. It is possible that the distribution of
lenses and non-lenses in my datasets were so different that the classification task was “too easy” to be
applicable to real data, or that they were so similar that the Bayes error for the task is too high to
meaningful. Details of datasets that went into the creation of the LSST source tables are in Section 4:
Dataset and Features.

2 Related work

Quasars are not the only objects in the sky whose time variability distinguishes them from other
objects. There is a wealth of literature on classifying the light curves, or the brightness-over-time
plot, of stars. Previous attempts in astronomy are instructive because telescope data on the whole
share three features: they are (1) noisy due to propagated errors from the optical system and the
atmosphere; (2) sparse because no object is imaged by a telescope at all times and the frequency
of imaging depends on the telescope schedule; and (3) class-imbalanced because, often, events of
scientific interest such as planet transits happen very rarely. All of these apply to my quasar data.

Hinners et al. attempted a binary classification of stellar light curves into those with a planet transit
and those without. (Hinners, Tat & Thorp, 2017) They report little success (close to random guessing)
with representation learning using LSTM and attribute this to all three factors mentioned above. But
they find that classification accuracy improves significantly when employ the Synthetic Minority
Over-sampling Technique (SMOTE) (Chawla et al., 2002) to oversample the minority class (the
transit class) and use classical machine learning algorithms such as SVM and Random Forest to the
boosted dataset. One drawback of SMOTE, however, is that features must be averaged across time,
as it cannot be used on raw time series.

Nevertheless, applying classical machine learning algorithms to the time-averaged properties can
be instructive. Before I took on this project, Kim et al. hand-engineered some quasar features and
ran the Random Forest algorithm on the time-averaged properties of quasars (Kim et al., 2018). One
advantage of random forest is that it can output a feature importance ranking. This exercise gave
us a sense of which features will be highly activated. Also, it guided in the process of excluding
non-lenses with extreme properties so that the classification task was not too easy.

Naul et al. seeks to classify light curves into various star classes (Naul et al., 2018). They address the
uneven sampling problem by passing the light curves through an RNN autoencoder. The autoencoder
takes as input the measurements of various features as well as the sampling times (more accurately,
the difference between consecutive sampling times) and the error on the measurements. It serves to
embed the light curves as a fixed-length vector. Moreover, the error on the measurements are input to
the loss function so penalty on high-noise measurements can be downscaled by the size of the error.
They report an impressive, near-perfect classification accuracy.

Feature importances

035

030

025

0.20

015

0.10

005

0.00

delta_trace
delta_e
delta_mag
delta_pos

£ ¢
8 z
8 2

]

Figure 2: The time averaged object properties were passed through a random forest classifier for an
analysis of feature importance. The bars correspond to the difference between the bluest band and
the reddest band in the orientation angles, rotation vector, size, ellipticity (shape), brightness, and
positional offset (Kim et al., 2018)

3 Dataset and Features

This project was intended as a proof of concept for a tools R&D for the LSST, so the dataset came
not from real lensed quasars but simulated ones. The number of positive examples was 15631, and
negative examples 20000 which resulted in a fairly even ratio of 0.78:1. The total dataset was split in
a 8:2 ratio between training and validation sets, and no test set was assigned due to lack of data.

The framework which emulates the LSST source table, SLRealizer (Park, 2018b), took as input two
catalogs to generate the source table of positive examples. One was a mock quasar catalog rendered
by (drphilmarshall, 2018) and another was a catalog of observational history called “Twinkles”
(LSSTDESC, 2018) which lists the observation conditions — such as sky brightness, wavelength band
used (the telescope only uses one band at a given time), and the degree of atmospheric turbulence —
as at each point in time. There were 128 time slices representing irregularly sampled observations in
a span of approximately 2 years. For each object and for each point in time, SLRealizer computed
what the 11 properties of the object would be as viewed through each of the five wavelength bands.
The 11 properties were all floating-point values. I list the notable ones here:

e Size : more specifically, the trace of the second moment matrix of the object
e Degree of ellipticity : in other words, the degree of angular distortion

e Orientation angle : the angle of above distortion

e Time since last observed : the time in days since the object was last sampled

e Flux : a value related to brightness

e Degree of atmospheric turbulence : this is related to the error on the size, as more turbulence
tends to stretch the image of the object

4 Methods

Four architectures were attempted: a 1D CNN where the convolution took place along the time axis
and the features served as channels, a 2D CNN where the convolution took place along both the time
and features axes, a simple LSTM, and an LSTM autoencoder.

For the 1D CNN and simple LSTM, I loosely followed the implementation by Burak Himmetoglu
(Himmetoglu, 2018). My modification on the 1D CNN has seven 1D convolution layers (with stride
1 and the last 5 layers alternated with 1D max pooling with stride 2) and two fully-connected layers
before a two-class softmax classification.

LSTM Layers
128 steps

Classifier

Figure 3: Schematic of the LSTM network. (Himmetoglu, 2018)

At each iteration, for each object, the LSTM network takes in 128 time slices of 55 floating-point
properties. Figure 1 shows a schematic of the architecture (Himmetoglu, 2018). It shows two layers,
but I used four for my application, as my features were more complex. It also shows the LSTM size
as 27, but I used 165 because it should be a few times greater than the number of channels (55 in
my case). I also used dropout with keep probability 0.5 and gradient clipping to prevent exploding
gradients.

For the 2D CNN, I downsampled the time series from 128 to 65 via simple averaging and gathered
two more features per band, to make 13 x 5 = 65 features. This yielded a 64-by-65 data array (64 on
the time axis, 65 on the features axis) which could be passed through a 10-layer 2D CNN. The 2D
CNN consisted of eight 2D convolution layers (all with stride 1 and the last 4 alternated with 2D max
pooling with stride 2) and 2 fully-connected layers.

The autoencoder architecture was taken from the work of Naul et al. (Naul, Bloom, Perez & van
der Walt, 2017). The only significant difference between their architecture and the one implemented
in this paper is the input vector size, which was 200 for Naul et al., but 128 for our application.
The output vector size was kept at 200 because the sampling intervals were highly irregular, and
we wanted the network to extrapolate in the sparsely sampled portions of the time sequence. The
autoencoder is a bidirectional gated LSTM; the encoder has size 64 and decoder size 2. The bottleneck
layer has size 8. Following their implementation, I also applied dropout with 75% keep probability.

5 Experiments/Results/Discussion

The goal is to identify as many non-quasars as possible. But more important than minimizing false
positives is to have little to no false negatives. This is because lensed quasars are very rare; we would
not want to miss already-precious lensed quasars in the real application with LSST data. In other
words, we can afford to misclassify non-quasars as quasars but not the other way around. Given
these specifications, we penalize false negatives more harshly than we do false positives. This is
achieved by using a cross-entropy loss as normal except with weighted classes. We define weights for
Class 1 (quasar) as 2.0 and the weights for Class 0 (non-quasar) as 1.0 and weight the loss function
accordingly, so that the loss contribution from quasars is higher than that of non-quasars.

At a given iteration, the loss was

N
1) (1)~ (i
LOSStotal = N Z CE (w(y(l))yg)7111())
1=1

where C'E stands for cross entropy loss, [V is the number of examples in the batch, y are the labels, §
are the scores, and w is the aforementioned class weighting such that w(0) = 1.0 and w(1) = 2.0.
The sum iterates over all examples in the batch, denoted :.

Training was performed in a batch configuration, where the batch size was 600. Batch normalization
was not used because the dataset was sparse and carried many null values. The null values were
replaced with an arbitrary unique floating-point number -9999.0 so batch normalization would have
introduced an artifact in the intermediate feature maps.

The initial learning rate was set to 0.01 and allowed to exponentially decay every 5 epochs with a
decay parameter 0.1.

Since there is some class imbalance in our dataset, it was useful to define an accuracy measure
other than a simple ratio between predicted correct and predicted total, i.e. (true positives + true
negatives)/(positives + negatives). So, following (Hinners, Tat & Thorp, 2017), we defined the
“balanced accuracy measure” as

1 /TP TN
accuracCypalanced = 5 ? + T .

Table 1: Performance comparison

Result 1D CNN LSTM 2D CNN LSTM autoencoder
Training Accuracy 74.0 85.2 68.0 92.1
(%)

Validation Accuracy 67.4 82.8 61.9 89.0
(%)

Training Balanced 68.5 81.3 64.7 88.8
Accuracy (%)

Validation Balanced 63.9 79.0 55.0 85.8
Accuracy (%)

Proportion of FNin 15 12 28 5
Validation (%)

Training Time (on 4 hr 4 hr 7 hr 13 hr
NVIDIA GTX 1070

8GB)

6 Conclusion/Future Work

I have presented the results of several experiments in using DNNSs to classify quasars from other
astronomical objects. A simple 2D CNN (first column of Table 1) performed the poorest, at only
slightly better than guessing accuracy, most likely because it was not temporally aware. There is
no reason to assume translational invariance across wavelengths or object properties, so the concept
of convolution does not make physical sense along the features axis. Moreover, the features axis is
sparse (at a given time slice, only one-fifth is filled) so convolutions across the features axis may have
introduced high errors to the kernel.

The autoencoder-classifier performed the best, as the model could both express the input as a fixed-
length vector representation and optimize for classification. This turned out to be optimal for a
sparse yet irregularly sampled time series. Although omitted in this paper, the decoded output was
instructive in seeing how the missing time steps were extrapolated by the network.

If T had more time, I would like to use the generative model introduced in (Dobler et al., 2015) to
create more flux variations on the quasar examples. This would have the effect of regularizing the
model. The bias could be reduced by making the model more complex. I have decided on a shallower
architectural design due to GPU constraint, but using very deep state-of-the-art architectures such as
ResNet would be help model the complex and nonlinear quasar features. If I had more time to gather
more details about the data, it would be worthwhile to get the errors on all the measurement values
(features) so that the errors could be fed into the autoencoder loss. Doing so could allow the model to

handle the measurement error internally, e.g. figure out for itself which time fluctuations are due to
noise and which are significant and intrinsic to quasars.

7 Contributions

I thank Phil Marshall, Staff Scientist at SLAC National Accelerator Laboratory, for his mentorship
on the project. Particularly helpful discussions included those on modeling the time variability of
strongly-lensed quasars and interpreting the LSST table format. Mike Baumer, a Ph.D. student in
the Stanford Physics Department, provided the raw catalog of negative examples (non-lenses) and
made initial queries to exclude extreme examples. Jenny Kim, an undergraduate Physics major, had
implemented a prototype of the data generation code before I took on this project.

References

Astro.cornell.edu. (2018). Quasar as a Gravitational Lens. [online] Available at:
http://www.astro.cornell.edu/academics/courses/astro201/g_lens_gso.htm [Accessed 11 Jun. 2018].

Chawla, N., Bowyer, K., Hall, L., & Kegelmeyer, W. (2002). SMOTE: synthetic minority over-
sampling technique. Journal Of Artificial Intelligence Research, 16(1), 321-357. Retrieved from
https://dl.acm.org/citation.cfm?id=1622416

Dobler, G., Fassnacht, C., Treu, T., Marshall, P., Liao, K., & Hojjati, A. et al. (2015). STRONG
LENS TIME DELAY CHALLENGE. I. EXPERIMENTAL DESIGN. The Astrophysical Journal,
799(2), 168. doi:10.1088/0004-637x/799/2/168

drphilmarshall. ~ drphilmarshall/OM10. (2018). GitHub. Retrieved 11 June 2018, from
https://github.com/drphilmarshall/OM10

Gavazzi, R., Marshall, P,, Treu, T., & Sonnenfeld, A. (2014). RINGFINDER: AUTOMATED DETEC-
TION OF GALAXY-SCALE GRAVITATIONAL LENSES IN GROUND-BASED MULTI-FILTER
IMAGING DATA. The Astrophysical Journal, 785(2), 144. doi:10.1088/0004-637x/785/2/144

Himmetoglu, B. healthDataScience/deep-learning-HAR. (2018). GitHub. Retrieved 11 June 2018,
from https://github.com/healthDataScience/deep-learning-HAR

Hinners, T., Tat, K. and Thorp, R. (2017). Machine Learning Techniques for Stellar Light Curve
Classification. Arxiv.org. Retrieved 11 June 2018, from https://arxiv.org/abs/1710.06804

Kim, J. et al. (2018). SLRealizer: LSST Catalog-level Realization of Gravitationally-lensed Quasars.

LSSTDESC. LSSTDESC/Twinkles. (2018). GitHub. Retrieved 11 June 2018, from
https://github.com/LSSTDESC/Twinkles

Naul, B., Bloom, J., Pérez, F., & van der Walt, S. (2017). A recurrent neural network for classification
of unevenly sampled variable stars. Nature Astronomy, 2(2), 151-155. doi:10.1038/s41550-017-0321-
z

Park, J.W. jiwoncpark/deep-qso. (2018a). GitHub. Retrieved 11 June 2018, from
https://github.com/jiwoncpark/deep-qso

Park, J.W. jiwoncpark/sl-realizer. ~ (2018b). GitHub. Retrieved 11 June 2018, from
https://github.com/jiwoncpark/sl-realizer

Treu, T., & Marshall, P. (2016). Time delay cosmography. The Astronomy And Astrophysics Review,
24(1). doi:10.1007/s00159-016-0096-8

