Item Prediction in Dota 2

Jack Scott Department of Computer Science
Stanford University
jackk314@stanford.edu

Abstract

I present a fully connected neural network with two hidden layers that predicts
which items players will purchase in the popular competitive online game Dota 2,
given the current state of the game. The model is trained off of information about
49,867 amateur Dota matches.

1 Introduction

Dota 2 is a wildly popular online five-on-five video game with a rich competitive scene. In every
game of Dota, players steadily accumulate “gold” over time from a number of sources, which can
then be spent on “items” that make their characters stronger as the game progresses. Items are just as
important as skill and strategy in determining the winner of the many battles that occur throughout
each game. This makes choosing the right items a crucial part of Dota, and a difficult one, too:
there are well over a hundred items to choose from, and different combinations can have different
advantages for any given situation. At high levels of play, players must predict which items their
opponents will buy and formulate their strategy accordingly. My algorithm seeks to assist in the latter
task: the input is the current items each player has, which character (called “heros” in Dota) they
have chosen to play, the current elapsed game time, and a skill rating of each player, and the output is
the probabilities of each player buying each item by the end of the game.

Input

Current game time

Player 1 current items
Player 1 hero Output
Player 1 skill rating Player 1 future items
Player 2 current items —_— Player 2 future items
Player 2 hero L4
[]
Player 2 skill rating °
[} Player 10 future items
[]

Player 10 current items

Player 10 hero

Player 10 skill rating

I’ve chosen to only feed into the algorithm information about the game that would be available to a
player during a normal game. This means that an interface using this network could give real-time

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

in-game predictions to a user without needing to consult extra information besides what is already
given to the player by the game. For example, the algorithm should not be able to use information
about exactly how much gold each opponent has, since this information is hidden in-game.

2 Related work

Because of the game’s notorious difficulty and complexity, Dota has received lots of attention from
machine learning researchers. The most common objectives in these papers are predicting the
outcome of matches based on information available at the beginning of the game, and recommending
hero choices during the character selection phase of the game. Just in past quarters of Stanford’s
machine learning classes alone, there have been two algorithms for prediction match outcomes [1,2],
and one for hero recommendations [3], and outside of Stanford people have written numerous papers
on the same subjects [4, 5, 6]. However, the biggest machine learning project for Dota 2 comes from
Valve themselves, the creators of the game. Two months ago, Valve released the “Dota Plus” which is
a premium subscription service that, among many other features, uses machine learning to suggest
item purchases throughout the game [7]. While it may seem like a seriously unfair advantage to have
access to a machine learning algorithm that can help make such important decisions, at high levels
of play, the competitive edge that Dota Plus and all the other machine learning tools that provide
similar services give is negligible. They are useful mostly for teaching newer player what the standard
choices are for any given situation, but will very rarely give novel suggestions that an experienced
player cannot come to on their own. Factors like the user’s familiarity with an item and whether they
understand why a certain item is optimal are often more important than knowing which item is “best”
for the situation.

This is why I propose a different approach to all of these tools. Instead of trying to suggest which
item the user should buy to help them win, my algorithm predicts items the opponent will buy. This
offers a number of advantages. Firstly, this gives the user the power in deciding what to do given
this information, rather than just telling them what decisions to make. This approach also avoids any
issues of credit assignment — it’s hard to tell how much a single item purchase by one of ten players
actually affected the game’s end result, but if we are just predicting opponent purchases, there is no
such subtlety, since the opponent either bought a item or they didn’t. This tool should also continue to
be useful in higher skill levels, since it can be difficult even for very high level players to keep track
of the decisions that five opposing players might make, as opposed to the relative ease of focusing on
one’s own item trajectory.

3 Dataset and Features

The dataset came from information about 50,000 public Dota matches provided by user devinanzelmo
on Kaggle [8]. I first eliminated matches shorter than 15 minutes: a Dota game lasts anywhere
between about 20 and 90 minutes, so matches less than 15 minutes long were probably ended short
by one or more players leaving the game at the beginning, thus making data from the match useless
— this left me with 49,867 matches. Then, for each match, I chose a random point in its duration
to extract features from. A single training example contains information about the match at that
randomly chosen point, and the label is the set of items that each player ended up buying after that
point in the game. I used 8 random points for each match, so the total number of training examples
was 49, 867 - 8 = 398, 936, which I split into different sets like so:

Train Dev Test
359,042 19,946 19,946

One training example from the dataset is given below:

Player Hero Current Items Skill Rating
1 Undying Arcane Boots 25.21
2 Arc Warden | Maelstrom, Boots of Travel 25.45

Input:

10 Techies | Soul Ring, Tranquil Boots 2473

Player Future Items

1 None
Label: 2 Mjollnir, Orchid Malevolence, Nullifier

10 Aghanim’s Scepter

4 Methods

The final network itself is a simple fully-connected neural network with two
hidden layers. There are 95 possible items each player could buy and 10
players in each game, so the network calculates 950 different probabilities for
each training example. A fitting loss function is then the average of the binary
crossentropy loss over all 950 predictions:

950
1.

950 4

=1

—(yilog(9s) + (1 — y;)log(1 — ;)

For activation functions the algorithm uses Leaky ReLLU with the following
formula:
f(z) = 0.1z if x < 0, otherwise x

This loss function was minimized using Adam optimization [9] for batch
gradient descent. A sigmoid activation is used for the final layer in order to
get predictions between 0 and 1.

Various regularization techniques were implemented: batch normalization
between fully connection layers, dropout with probability 0.1, and ¢; regular-
ization with a weight of 5 x 1077,

One reason for such a simple network is scalability: while this project only used
49, 867 matches, a commercial implementation of a tool using the network
could take advantage of the huge amount of publicly available match data for
Dota matches, like the “data dump” provided by OpenDota, which contains
data for almost 1.2 billion matches spanning five years [8]. Another advantage
of a quickly trainable network comes from the dynamic nature of the game
itself. Dota receives balances changes to its characters several times each
month, which can drastically change the decisions that players make, meaning
that any neural network must keep up to date by training with data from recent
games. Even outside of actual changes to in-game values, Dofa’s metagame
is in constant flux, as attitude to certain strategies shift and new discoveries
are made.

I briefly investigated using a Recurrent Neural Network in order to capture
the notion of sequences of item purchases through the game. However, results
were lackluster. This makes sense, because intuitively it shouldn’t matter the
order in which each player bought their current items: the decisions players
make after a certain point in time should rely only on the current state of the
game, rather than its history.

5 Experiments/Results/Discussion

.
Input (2111)

— 1

Fully Connected
(1500)

Batch
Normalization

Leaky ReLU
(0.1)

Dropout (0.1)

Fully Connected
(1000)

Batch
Normalization

Leaky ReLU
(0.1)

Fully Connected
(950)

Sigmoid

R —

Output (950)
- @@

Figure 1: Structure

of the network

The primary metric I used during testing was AUC, which is the area under the curve defined by the
values of false positive rate and true positive rate for varying output thresholds. This is most fitting
because the probability that a player will buy one specific item out of 95 is usually quite low, even
if some items are much more likely that others in a given situation. Thus, we care more about the
relative confidence of the algorithm rather that its accuracy given a specific cutoff value.

Below are some of the experiments for various hyperparameters.

o Batch Size
The gradient descent uses a batch size of 1024, which was chosen by increasing the batch

size until the GPU reached maximum utilization according to the nvidia-smi command,
ensuring that maximum parallelism is achieved for quick training.

Hidden Layer 1 Size

To test different sizes for the first layer, I trained for 300 epochs to ensure that larger networks
would have time to train the greater number of weights. For these experiments, I used a
Leaky ReLLU with 0.01 leakiness, batch normalization, 0.1 dropout, and a second hidden
layer size of 1000.

Layer 1 Size | 1000 1250 1500 1750 2000
Train AUC | 0.895 0.900 0.909 0911 0912
Dev AUC | 0.848 0.848 0.854 0.849 0.852

A layer size of 1500 seemed to strike the best balanced between bias, variance, and training
time.

Leaky ReLU Leakiness
After choosing the hidden layer sizes, I used the same parameters but with changing
leakiness.

Leakiness 0 0.01 002 0.05 0.1 0.2
Train AUC | 0.902 0.909 0.908 0910 0913 0.901
Dev AUC | 0.848 0.854 0.855 0.855 0.858 0.856

There’s not much difference between the various leakiness paramaters, as long as leakiness
is positive, but a value of 0.1 gave the best AUC for the dev set.

/1 normalization weight
The model was clearly overfitting, even with batch norm and dropout, so I introduced ¢;
normalization to reduce variance.

Weight | 1007 5x107 10°° 5x10°°
Train AUC | 0912 0.904 0900 0.885
Dev AUC | 0870 0.885 0.883 0.875

The final hyperparameters are:

Layer sizes: 1500, 1000

Batch Size: 1024

ReLU Leakiness: 0.1

Dropout Rate: 0.1

/1 normalization weight: 5 x 107

Learning Rate: 0.01

And the final algorithm’s performance was:

Train AUC 0.9037
Dev AUC 0.8854
Test AUC 0.8859

The ROC curve on the test set for varying thresholds:
ROC curve for test data

10 1

0.8 1

0.6 1

041

True Positive Rate

021

0.0 1

T T T
00 02 04 06 08 10
False Positive Rate

6 Conclusion/Future Work

These results were actually much better than I had expected. The ROC curve might not seem very
impressive; we can only achieve a true positive rate of about 60% at a false positive rate 10%, but the
problem’s difficulty may mean that this is fairly close to the optimal Bayes error. Players may make
sub-optimal purchases, and there may be many seemingly viable item choices for a given situation,
so the model’s performance is quite good given the amount of randomness introduced by the human
element. It takes years for players to develop an intuition for which items the opponents will buy, so
this network would actually be fairly useful for newer players. Given more data, this network could
let players stay one step ahead of their opponents by accurately determining what the enemy will buy,
allowing the user to counter their strategies.

Besides training off more matches, some other features of the game state could perhaps be imple-
mented to boost performance. The two most importanat ones would probably be the “hero level” of
each player, which can help determine the relative strengths of each player and thus which items they
are likely to buy, and the status of each team’s structures (structures are important immobile units
that each team must defend).

The network could also potentially be used in transfer learning for other objectives, like recommending
which items to purchase, and predicting the match outcome during the game.

7 Contributions

Solo project.

References

[1] Petra Grutzik, Joe Higgins,Long Tran. Predicting outcomes of professional DotA 2 matches. Dec 16 2017.
[2] Kuangyan Song, Tianyi Zhang, Chao Ma. Predicting the winning side of DotA2. 2017.

[3] Kevin Conley, Daniel Perry. How Does He Saw Me? A Recommendation Engine for Picking Heroes in Dota
2.2017.

[4] Kaushik Kalyanaraman. To win or not to win? A prediction model to determine the outcome of a DotA2
match. 2016.

[5] Filip Johansson, Jesper Wikstrom. Result Prediction by Mining Replays in Dota 2. 2016.
[6] Nicholas Kinkade, Kyung yul Kevin Lim. DOTA 2 Win Prediction. 2015.

[7] https://www.dota2.com/plus. 2018.

[8] Devin Anzelmo. https://www.kaggle.com/devinanzelmo/dota-2-matches/data. 2016.

[9] Diederik P. Kingma, Jimmy Ba. Adam: A Method for Stochastic Optimization. ICLR 2015. Dec 22 2014.

Libraries used:

e keras.io

e tensorflow.org

e scikit-learn.org

e pandas.pydata.org
e matplotlib.org

e docs.python-requests.org

