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Abstract—A deep learning methodology is applied to the
problem of determining heart rate from low sample rate PPG
and accelerometer signals in the presense of motion artifact. The
approach taken in this work utilizes synthetically-generated data
to augment a small public dataset and compares two general
methods - a time-domain approach where signals are directly fed
into an LSTM and a frequency-domain approach where FFTs of
the signals are fed into a fully-connected network. Performance
of these models is evaluated on the ICASSP signal processing
cup 2015 PPG dataset and is compared to state-of-the-art signal
processing schemes for accuracy and to PPG circuits found in
the ISSCC for power. Our best model achieves an accuracy of
3.09 beats per minute (BPM) average absolute error on 10X
decimated data, compared to state-of-the-art 1.04 BPM avAE on
original un-decimated data. Additionally, it is estimated to be
capable of 25, W operation compared to a state-of-the-art 38, W
system that does not handle motion artifacts.

I. INTRODUCTION

Heart rate (HR) monitors are becoming a ubiquitous
technology on portable devices such as smartphones, smart
watches, and fitness trackers. These HR monitors rely on
photoplethysmographic (PPG) technology which determines
HR by detecting changes in skin reflectivity as blood vessels
contract and dilate. To do this, they emit short pulses of light
from an LED and detect the reflected light on a photodiode
whose current is then digitized and processed.

Despite its widespread usage, PPG technology continues
to suffer from two main issues: motion artifact (MA) noise
and power consumption. MA from walking, running, and
other concussive activities interferes with the raw PPG signal
in a particularly devestating way - it is usually larger in
magnitude and close in frequency to the desired PPG signal,
making it hard to separate using traditional signal processing
techniques. Power is an issue for mobile devices, since energy
is constrained by the battery and the LED required for PPG
sensing traditionally requires a lot of power.

This work examines smarter algorithms using deep learning
to tackle the challenges mentioned above. Deep learning helps
in the following ways. First, the sequential nature of the data
suggests that a recurrent neural network architecture may be
able to learn the HR simply by feeding it normalized raw data.
Second, many traditional techniques try to model the effects
of MA on PPG with a linear filter on the accelerometer. It
may be the case that a more powerful function approximator
would serve as a better filter, since MAs are likely to stress the
system into non-linear regimes. Third, deep learning is known
for its robustness to noise suggesting possible routes to saving

power by reducing LED intensity (higher thermal noise) or
sampling rate (higher spectral noise).

Our work focuses on a dataset from the ICASSP 2015
challenge [1]. It consists of PPG, accelerometer, and electro-
cardiogram (ECG) data taken from patients following a spec-
ified exercise routine. This challenge allows for a quantitative
comparison between algorithms designed by the competitors
and any algorithms developed in this project. ECG data serves
as a baseline “true” HR and is not used for heart rate
predictions.

II. PRIOR ART

The ICASSP 2015 challenge drew many research papers.
One of the best uses a complicated, though traditional signal
processing pipeline consisting of a Wiener filter and phase
vocoder [2]. It operates as follows. The FFTs for 8-second
windows of PPG and accelerometer data are found, then a
Wiener filter is applied to the FFTs in an obvious way - the
“noisy signal spectral density” coming from the PPG and the
“noise spectral density” coming from the accelerometer FFTs.
The derived Wiener filter is applied to the signal and peaks of
the cleaned signal are found. Finally, a phase vocoder is used
to get slightly more accurate heart rate measurements. Their
work achieved an average absolute error per subject of betwen
0.54 and 2.61 BPM, about half the error found in the original
work presenting the data [1].

A number of groups have attempted reductions along the
power dimension. Traditional analog circuit optimization can
lead to very low powers in the analog circuitry, such as
[5]. However, LED power is still a concern and is usually
minimized by reducing sample rate. A few papers look at ways
to achive this goal.

One attempt to reduce sample rate is through compressive
sampling [3]. Compressive sampling is a technique in which
samples are taken at a much lower rate than the Nyquist
rate. If you know that it is sparse in some domain, then the
required sampling rate can be reduced to a value proportional
to the density of non-zero elements in the sparse domain.
Using clean PPG data without MA, they achieve 30x LED
power reduction, although at the expense of HR accuracy
and robustness to MA. Even in an environment with no
MA, they only achieve around 10 BPM accuracy. One other
issue with this approach is that reconstruction of the signal
requires solving a convex optimization problem, which is a
computationally-expensive procedure.



A more recent result attempts to achieve low power by
only sampling near the peak of the signal and attempting to
maintain lock to the PPG peaks [4]. Using their approach, they
report power consumptions as low as 384 W at an accuracy of
around 5 BPM at 60 BPM. However, their system was tested
on a motion-artifact-free signal and so would be unlikely to
perform well in a continuous health monitoring environment.
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Fig. 1. Comparison table of various ISSCC circuits used for low power PPG-
based heart rate detection [4].

III. ICASSP DATASET

Fig. 2. Example of ICASSP data evaluation windows. Low motion artifact
(left) versus high motion artifact (right).

The ICASSP dataset contains 12 samples of data from
12 different subjects. Each sample is 300-seconds long and
contains two PPG signals, three-axis accelerometer signals,
and an ECG signal. The ECG signal is for reference only and
can not be used to determine heart rate. The ICASSP chal-
lenge was to determine the heart rate for 8-second evaluation
windows every 2-seconds. Towards this goal, the dataset also
contains “ground truth” heart rates for each of these evaluation
windows.

Figure 2 shows some representative samples of evaluation
windows from the dataset. The left shows a relatively clean
signal with minimal motion artifact while the right shows a
signal corrupted with heavy motion artifact. When looking at
a spectrogram of the signal (fig. 3) over the full 300 seconds,
it is easy to see the heart rate and motion artifact signals.
However, distinguishing which is which can be difficult.

Spectrogram of PPG Signal

Fig. 3. Spectrogram of user 9’s data.

Instead of working directly with this data, we decimate it
10x from a sample rate of 125Hz to a sample rate of 12.5Hz
in order to replicate the low sample rate required for a power-
efficient device. The problem, then, is to see whether deep
learning is able to achieve anywhere near the state-of-the-art
errors found in [2] while maintaining power levels comparable
to those shown in fig. 1.

IV. APPROACH

One immediate problem becomes obvious when considering
deep learning approaches for the ICASSP dataset: there is not
enough data. In fact, there are only 1764 labeled evaluation
windows. To tackle this problem, we employ synthetic data
generation to augment the dataset in training. One additional
benefit of generating data this way is that we can iteratively
increase data difficulty to slowly converge on the best deep
learning models.

Our training set consists of the first six subjects of the
ICASSP data and 1.5 million synthetically-generated training
examples (100k generated every two epochs of training for 30
epochs). The choice of 100k was enforced by computational
memory constraints. Regenerating data every two epochs was
chosen so that the effect of training could be seen while still
keeping data as fresh as possible (that is, it is the smallest
number larger than one). Finally, 30 epochs was found as the
empirical point where synthetic data dev performance flattened
out. Our test set comprises the last six subjects (7-12) of
ICASSP data.

To decide on a deep learning model, we considered multiple
possible inputs and outputs. One obvious input is to feed
the time-domain signals directly into a network (we refer
to this as a “time domain” approach). Because this is a
signal processing problem which amounts to peak frequency
detection, another obvious input is the signal FFTs (“frequency
domain” approach).

A number of different outputs make sense. One example is
a sequential output that outputs a “1” at PPG peaks and “0”
elsewhere. For a more balanced dataset, another option is out-
putting a 50% duty-cycle squarewave whose rising edges are
aligned with the PPG signal pulses. Either of these approaches
result in a signal train of points where the PPG pulses occur.
The heart rate can then be derived from these peak locations.
This approach ended up failing because even small errors in
the output could result in wildly inaccurate frequencies. For



example, each additional missplaced “1” could increase the
heart rate by 7.5 BPM.

Another approach is to use the neural network to regress on
a frequency directly. We found that regression worked poorly,
which is consistent with other results examining the usefulness
of neural networks for regression tasks.

The most promising results came from having the network
output the frequency bin the signal belonged to as a category.
By slowly increasing the difficulty of the dataset, we were
able to find the limits of what frequency resolution could
be reasonably classified. Surprisingly, even with very difficult
datasets, some networks successfully classified > 50% of the
evaluation windows to within 1 BPM out of 160 bins ranging
from 40 BPM to 200 BPM.

Overall, we converged on frequency bin classification as
the output and compared the time domain input approach to
the frequency domain input approach. The models for each
approach will be described in more detail.

Finally, after deciding on a model that would classify each
evaluation window, the results for the classification windows
for each subject were post-processed through an algorithm
that stitches the output probabilities together into a single
heart rate tracking curve. The algorithm iteratively updates
a moving log-probability over all frequency bins starting at
no prior p = np.zeros (nout), then updating according
to the probability distribution spit out by the deep learning
model: p = gaussian_filterld(p, sigma=5)
p += np.log(cur_probal[i] + eps), where
eps = 1 / nout. At each window, the heart rate is
chosen as as an average of the three bins closest to the
argmax of p, weighted by the relative probabilities implied
by p.

We compute three metrics for accuracy: classification ac-
curacy, average absolute error (avAE, eq. 1), and standard
deviation of absolute error (sdAE, eq. 2). Classification ac-
curacy is used to assess performance on the synthetic dataset.
avAE and sdAE are both used for ICASSP, and were chosen
because they are common metrics found in the literature. Our
main optimization metric is avAE, but the other metrics help
guide performance.
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A. Data Synthesis

Data synthesis occurred in successive stages. By slowly
increasing the difficulty of the signals, it was easy to converge
quickly on the approximate deep learning architectures needed.

1) Sine wave of random frequency/phase, 12.5 Sps.

2) Added Gaussian noise at -40dB to PPG.

3) Added MA as a sine wave at a different frequency and

phase and a scale factor for MA influence on PPG signal.

Data V7 - Scaled Distorted Signal + Noisy Harmonic Motion +

Impulses + Noise

Fig. 4. Sample of synthetic data version 7.

4) Introduced a linear-varying envelope to the PPG signal.
5) Added harmonics to the motion artifact.
6) Added half- and double-frequencies to the PPG signal
to distort it to match ICASSP signals.
7) Added sinc impulses to model “jumps” in the PPG signal
not due to rapid motion.
An example final result is displayed in fig. 4. We now
discuss a case study representative of the iteration process for
elevating difficulty of the data synthesis model.

Fig. 5. Sample of synthetic data version 3. PPG (blue) and accelerometer
(red) are plotted.

Fig. 5 shows a representative sample of the third version of
the data synthesis model. If used to train a model, the ICASSP
data will often fail at specific points such as the one shown
in fig. 6. Notice that we mis-classify the frequency too high
due to the high frequencies present in motion artifact. Since
the model of fig. 5 assumes MA to be a pure sine wave, the
model has been trained to see the high frequency signal in the
PPG signal as the “true” PPG rather than as an artifact of MA.

A deeper look into exactly how MA interacts with the
PPG signal shows the problem more clearly. In fig. 7, each
acceleration vector is plotted as a point in 3D, colored by the
PPG value at that same time. Notice the cluster of blue (low
PPG value) and cluster of red (high PPG value). What the plot
shows is that the MA appears to alternately raise, then lower
the PPG signal during a single large period of MA rather than
the smaller period of the 2nd harmonic, implying there is not
merely a linear relationship between MA and PPG.

A new model is constructed to generate MA, where the
impact of the MA occurs at a main cycle frequency, but the



Fig. 6. A common problem occurring in the ICASSP data due to synthetic
data - real data mismatch.

Fig. 7. Accelerometer XYZ parameterized plot colored by PPG value. Note
that certain accelerometer values correlate with lower (blue) or higher (red)
PPG values consistently. Heart beats occur at the enlarged dots.

MA itself contains 2nd harmonic components. A representa-
tive sample of the new synthetic data is shown in 8.

Fig. 8. Sample of synthetic data version 5. PPG (blue) and accelerometer
(red) are plotted.

B. Time Domain Approach

The key idea in the time domain approach is to feed
PPG and accelerometer signals for each 8-second evaluation

window directly into an LSTM and output the heart rate as a
category. Starting with very simple synthetic data (data version
1), it became obvious that the best approach would be at
most a few layers deep, would include a sequence model, and
might start with some convolutional layers. For more difficult
data, convolutional layers helped less. LSTMs and more units
performed better than simple RNNs.

The best model had PPG and accelerometer input (2 x 100)
feed directly into a 512-unit LSTM, then to a 512-neuron
dense layer, a dropout(0.5) layer, and finally a softmax layer
with 160 outputs.

On the most challenging synthetic dataset, the network
achieves a 70.1% accuracy on the synthetic dataset - recall that
it is trying to predict within 1 BPM using only an 8-second
long window. However, these results do not generalize well
to the ICASSP data where there is a high avAE and sdAE
of 10.2 and 11.2, respectively. See table I for more details
and fig. 10 for qualitative and quantitative performance on the
training and test [CASSP datasets.

C. Frequency Domain Approach

The key idea in the frequency domain approach is to feed
FFTs of the PPG and accelerometer signals in each evaluation
window to a neural network with categorical heart rate bins
as outputs.

Inspired by [2], we chose to feed two 64-point FFTs per
signal - one left justified £ft (sig[:64]) and one right
justified £ft (sig[-64:]) to allow time-varying informa-
tion to seep into the classification task. Our best network
takes 4 FFTs (4 x 32) through three 512-node dense layers, a
dropout(0.2) layer, and a final softmax layer with 160 outputs.

On the most challenging synthetic dataset, the network
achieves 58.1% accuracy. These results generalize weakly to
the ICASSP data. See table I for more details and fig. 10 for
qualitative and quantitative performance on the training and
test ICASSP datasets.

Fig. 9. FFTs of a problematic evaluation window. The true heart rate (vertical
red line) and network output probabilities (blue) are plotted.

V. RESULTS

Results from the time domain and frequency domain ap-
proaches are shown in figures 10 and 11, respectively. The
top six plots were part of the training set, while the bottom



TABLE I
COMPARISON TO HIGH-PERFORMANCE ALGORITHMS AND LOW-POWER CIRCUITS

Synth Train ~ Synth Dev | ICASSP avAE (7-12) ICASSP sdAE (7-12) Power
TROIKA [1] - - 2.45 BPM 1.76 BPM -
TEMKO [2] - - 1.04 BPM 0.79 BPM -
Compressive sampling [3] - - 10 BPM - 172uW
Heart-beat locked loop [4] - - 5 BPM - 38uW
This work Time-Domain 70.3% 70.1% 10.2 BPM 11.2 BPM 25uW*
This work Frequency-Domain 59.6% 58.1% 3.09 BPM 3.37 BPM 25uW*

*Estimated power from experiments with personal hardware.

six comprised the test set. The quantitative results avAE and
sdAE are found for just the data in the bottom six plots after
applying the post-processing step described in sec. IV and are
reported in table I.

Fig. 10. Results of running the time domain algorithm on all ICASSP datasets.
For the test set, avAE = 10.2; sdAE = 11.2.

Fig. 11. Results of running the frequency domain algorithm on all ICASSP
datasets. For the test set, avAE = 3.09; sdAE = 3.37.

VI. DISCUSSION AND FUTURE WORK

The time-domain approach is beneficial in that it requires
no up-front processing compared to the frequency-domain
approach. Looking at table I, it is clear that the time-domain
approach more accurately classifies heart rate in the synthetic
dataset. However, it is also more sensitive and fails often when
run on the ICASSP data, as seen in fig. 10.

The  frequency-domain  approach  requires  FFT-
preprocessing, but is a bit more robust on ICASSP. Its

lower relative performance on the synthetic dataset is likely
because the evaluation windows are short, causing the FFTs
to have low frequency resolution. The essential difference is
that the time-domain approach includes phase information.

More generally, it can be inferred that the time-domain
approach is more sensitive to differences in the statistical
properties between the synthetic dataset and the real data, but
if the synthetic dataset can be improved sufficiently, it might
be able to surpass the frequency domain performance. It is
possible that a combined time domain and frequency domain
approach can achieve both high precision and high reliability.

Compared to the state-of-the-art algorithms, such as [2],
the results found here have about 3x larger error. However,
part of that is due to the significantly reduced sample rate
- 12.5 Hz instead of the original 125 Hz. Additionally, it
is possible that improvements such as combining the time
domain and frequency domain approaches and improving the
data synthesis model to more closely match ICASSP data
could further reduce errors to close the gap with state-of-the-
art methods, despite the lower sample rate.
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Fig. 12. Output of personal hardware with a sampling rate of 12.5 Hz and
an approximate energy of 2uJ per sample.

Finally, we consider power consumption. Empirical testing
on hardware suggests that the SNRs required for both of these
algorithms implies an energy expenditure of approximately
2p)/sample (fig. 12 demonstrates signal fidelity with these
parameters). With these algorithms demonstrated at 12.5Hz,
a system running at 25uW could achieve approximately 3
BPM avAE, surpassing [3] and [4] in power, accuracy, and
robustness. However, this does not include the computational
costs of performing multiple 512x512 matrix multiplies. When
factoring the computational cost in, it is unlikely the system
could achieve sub-100p4W operation.
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