Learning to Play Minichess Without Human Knowledge

Karthik selvakumar Bhuvaneswaran
karthikO@stanford.edu

Abstract

Implementing a self play based algo-
rithm using neural networks has be-
come popular after the tremendous
success of Alpha Zero by Deep Mind
in the game of go. Replicating the re-
sults for a game with smaller search
space like TicTacToe, Connectd etc
has already been proven in alpha-zero-
general (Surag Nair et al, 2017), but
for games with larger search space like
chess requires scaling. In this paper we
apply scaled up version of alpha-zero-
general for the game of Minichess and
evaluate our learning algorithm with
random and greedy baselines.

1 Introduction

It was estimated that games like Go, which
have a large branching factor, and where it
is very difficult to determine the likely win-
ner from a non-terminal board position, would
not be solved for several decades. However,
AlphaGo (Silver et al. 2016), which uses re-
cent deep reinforcement learning and Monte
Carlo Tree Search methods, managed to de-
feat the top human player, through extensive
use of domain knowledge and training on the
games played by top human players. Many of
the existing approaches for designing systems
to play games relied on the availability of ex-
pert domain knowledge to train the model on
and evaluate non-terminal states. Recently,
however, AlphaGo Zero (Silver et al. 2017b)
described an approach that used absolutely
no expert knowledge and was trained entirely
through self-play. In our work, we extract
ideas from the AlphaGo Zero paper and ap-
ply them to the game of Minichess (5X5). For
evaluation, we compare our trained agents to
random and greedy baselines.

2 Related Work

DeepMind published a paper of Alpha Zero on
arXiv that extends AlphaGo Zero methods to

Chess and Shogi. However, the code is not
open source and will not be released by Deep-
Mind. Moreover, they use about 5000 TPUs to
generate games in parallel. This makes it very
difficult to replicate the results and extend the
work to other games. Alpha Zero General is
open source single-thread single-GPU version
that works for any game and any framework
(currently PyTorch, TensorFlow and Keras).
It works quite well on small games such as 6x6
Othello after 2-3 days of training on a single
GPU. We will be extending Alpha Zero Gen-
eral project by analyzing the components that
can be parallelized and training a Neural Net-
work for the game of Minichess.

3 Methods

We provide a high-level overview of the algo-
rithm we employ, which is based on the Al-
phaGo Zero (Silver et al. 2017b) paper. The
algorithm is based on pure self-play and does
not use any human knowledge except knowing
the rules of the game. At the core, we use a
neural network that evaluates the value of a
given board state and estimates the optimal
policy. The self-play is guided by a Monte-
Carlo Tree Search (MCTS) that acts as a pol-
icy improvement operator. The outcomes of
each game of self-play are then used as re-
wards, which are used to train the neural net-
work along with the improved policy. Hence,
the training is performed in an iterative fash-
ion the current neural network is used to ex-
ecute self-play games, the outcomes of which
are then used to retrain the neural network.
The following sections describe the different
components of our system in more detail.

3.1 Gameplay

A 5x5 board is the smallest board on which one
can set up all kind of chess pieces as a start po-
sition. We consider Gardner’s minichess vari-
ant in which all pieces are set as in a standard
chessboard (from Rook to King). This game
has roughly 9 * 10'® legal positions (Mehdi

Mhalla et al, 2013) and is comparable in this
respect with checkers.

Eapwe Sw
Adida

ABRARA
Bo8uE

Gardner

Figure 1: Popular Minichess layouts (5X5)

3.2 Neural Network Architecture

.‘ .’ .' ﬂl ’I —

Figure 2: Neural Network Architecture

We use a neural network parameterized by
that takes as input the board state s and out-
puts the continuous value of the board state
vg € [-1,1] from the perspective of the current
player, and a probability vector p over all pos-
sible actions. pj represents a stochastic policy
that is used to guide the self-play. The neural
network is initialized randomly.

Cross erjtropy T

Best action to take ?
(One of 943 Actions - classification)

Probability of winning ?

Mean-Squared Error Z (range from -1 to +1 - regression)

Figure 3: Parameters in Neural Network and
choice of loss functions

At the end of each iteration of self-play, the
neural network is provided training examples
of the form (sy,7,2¢). 7 gives an improved
estimate of the policy after performing MCTS
starting from st, and z; € [-1,1] is the final out-
come of the game from the perspective of the
current player.

The neural network is then trained to min-
imize the following loss function:

== (vo(st) — 2z0)* + Tlog(pi(st))

We use a neural network that takes the raw
board state as the input. This is followed by 4

Hyperparameter Value
MCTS Simulations 200
Exploration (cpuct) 1

Learning Rate 0.0005
Update Threshold 0.5
Arena Compare 20
Iterations 100
Episodes 100

Data Augmentation Two way Symmetry

Value Activation tanh

Policy Activation Softmax

Batch Size 128

Number of Layers 7 (4 CONV, 3FC)
Regularization Dropout (0.2)
Optimizer Adam

Normalization Batch Normalization

Figure 4: Hyperparams used for Pre-

processing and Training

Figure 5: Loss values after each epoch

convolutional networks and 2 fully connected
feed forward networks. This is followed by 2
connected layers - one that outputs vy and an-
other that outputs the vector pyp. We tried
standard Neural Net with 6 layers, but spa-
tial information was lost and performance was
bad. Training is performed using the Adam
(Kingma and Ba 2014) optimizer with a batch
size of 128, with a dropout (Srivastava et al.
2014) of 0.2, and batch normalization (Ioe and
Szegedy 2015). The neural net is implemented
in Keras with tensorflow-gpu backend.

3.3 Distributed Architecture

We ran our experiments on AWS EC2 in-
stances, but architecture is generic for all cloud
services. Following table explains the different

components and type of instance created in
AWS.

Component Name Instances

Training Data Generator
Training Data Storage
Neural Net Trainer
Pitter

4 x p2.xlarge
1 x AWS S3
2 x p2.4xlarge
1 x p2.xlarge

Table 1: Distributed Arch Components

(CS230 Stanford University Final Report 2

Training Data Generator ~ Training Data Neural Net Trainer Pitter

Parallel Self Players
(AWS p2.xiarge instances|

L]

== A

=]

Parallel Neural Nets
(AWS p2.xlarge instances)

=
s 2
"‘ :d
2 g
2 m
= n

s

5 53 Batch1

AWS 53 Batch2

il
TR |

ey
- >
priiers: = - : I
P AWS S3 Batch3 e)
z =) Model2 PR
m & &
B 5
LR AWS 3 Batchd
Winner Model

4

Figure 6: Distributed Architecture in AWS

3.4 Dataset used - Data Generation
through pure Self Play

Training Data Generator component is re-
sponsible for carrying out self plays and gen-
erating dataset required for training our Neu-
ral Network. It creates two players and plays
the game till the end state (Won/Lost/Draw).
On every move, it collects three data points:
board state, policy output and value output
of the network. This dataset is then uploaded
to AWS S3 which will be consumed by Neu-
ral Net Trainer.At any point of time, currently
known best model is used and the network be-
comes smarter and smarter after training for
more iterations with larger training data. The
dataset is shuffled to avoid bias between two
consecutive moves and data augmentation is
carried out by flipping the board from right to
left. Castling and en passant were not consid-
ered to simplify the scope.

3.5 Neural Net Trainer

Neural Net Trainer component performs the
training and needs to be more powerful to
crunch the enormous amount of batch data
generated by self play and perform several it-
erations of gradient descent. Hence it is chosen
to be four times powerful than Training Data
Generator in terms of number of physical GPU
hardware and CPU concurrency. This compo-
nent performs training and outputs the model
with lower loss.

3.6 Pitter and best model selection

Pitter component takes all the models from
Neural Net Trainers and performs pitting. De-
pending on the winner, the best model is de-
cided and all the Training Data Generators are

updated with this latest model, which helps
in improving the quality of Training data be-
ing generated, eventually leading to an expert
model.

3.7 Training Performance

o We evaluated the training till 30 itera-
tions in both single instance and the pro-
posed distributed architecture.

e We observed 2.5 times improvement in
training speed with distributed setup over
single instance (ref Figure 7).

ecture == With Distributed Architecture

Figure 7: Single Instance vs Distributed Ar-
chitecture

4 Experiments

We ran experiments on a 5X5 version of Chess
referred as Minichess. We used 200 MCTS
simulation per move which is good enough
simulation for a 5X5 board. With 100 episodes
per training iteration and 100 iterations of
training it took 8.5 hours of simulation.

Inorder to scale the training, any MCTS
search beyond 200 search deep will be con-
sidered as draw. This happened in scenar-
ios when there is only White King and Black
King left on the board and both players can-
not bring the game to an end. This draw
state is tailored for subset of board games like
Minichess and might lead to erroneous predic-
tion for other board games where the wvalid
simulation might itself be more than 200 level
deep.

4.1 Baselines
We implemented three baselines for compari-

son with our trained AI Player.

e The first is a random player baseline. A
random player chooses from one of the

(CS230 Stanford University Final Report 3

valid moves randomly at each step in the
game.

e The second is a greedy player which
chooses a move that causes the attack
which maximizes the score. For comput-
ing score each Piece is assigned a weight.

Piece White Weight Black Weight
Pawn 100 -100
Knight 280 - 280
Bishop 320 -320
Rook 479 -479
Queen 929 -929
King 6000 -6000

Table 2: Weights of Pieces on Greedy Player

e Third is comparison of different iterations
of the model itself with the best model.

4.2 Results

The results of the different baselines are below:

Color Won Lost Draw
Rand White 10 0 0
Player Black 10 0 0
Greedy |White 10 0 0
Player Black 3 0 7
Model White 10 0 0
Version 1 |Black 7 0 3
Model White 10 0 0
Version 5 | gjack 0 0 10
Model White 0 0 10
Version 15| Back 0 0 10

Figure 8: Results of pitting Best Model (V21)
against other players

Neural Net Overall Results

== Random Player == Greedy Player

0:9—0.9
0.8
0.75
0.7 0.7
—

0.5 0.5

Fraction Won

5 10 15 20 25 30

Number of Iterations

Figure 9: Overall Performance of Neural Net
over other baselines

Neural Net plays as White
dom Play by Player

Neural Net plays as Black

Figure 10: Neural Net as white vs black

4.3 Discussion

After 21 iterations, when evaluated:

e Our model defeats random player 100% of
the times, irrespective of whether it plays
as Black or White (ref Figure 10).

e Defeats greedy player 100% when Neural
Net takes first turn (White), but has lower
winning rate when it plays as Black (ref
Figure 10).

e The best model never loses any game
against any baseline, so it manages to ei-
ther win or draw the game (ref Figure 8).

e When Neural Net pits against Random
and Greedy baselines on entirely new
board layouts like BabyChess and Mallet,
produces impressive results with very few
losses (ref Figure 11).

Chess Layout [Baseline |Color Won |Lost |Draw
o White 10 0 [
Black 9 1 0
BabyChess
White 10 0 0
Greedy
Black 0 10 0
_ White 10 0 0
Mallot Black 9 1 0
White 10 0 0
Greedy
Black 10 0 0
Figure 11: Trained on Gardner and trans-

ferred to other layouts

5 Observations

e While pitting against Iteration 1 of the
Model, when we chose white and placed
Knight, Neural Net doesn’t attack and in-
stead plays a passive Pawn forward move.

e [t becomes more aggressive after iteration
5 and attacks the Knight with its Knight.

(CS230 Stanford University Final Report 4

HalluvlF RagvE EHaGuws N Hus
ANl A WA AKANA AX24A
B Al N Bl N e BN
ARAINA ARARA ARARA ARARA
0 OvE B BeE O 8gE B 8

Iteration 1: Black plays passively,

Iteration 5: Black plays aggressivel
ignores to attack the Knight.

plays with Knight instead of Pawn.

, but

<
&

e After iteration 15, Neural net uses Pawn
for attack if possible rather Knight to mit-
igate the loss in the next move.

e At higher iterations most of the game
ends in draw, with either King defend-
ing its Pawn or only two kings left on the
board as shown in the board.

Iteration 15: Black plays
aggressively, and uses Pawnt.

Iteration 30: During self play at higher
iterations 30+, most games ends in Draw

6 Conclusion

e Trained model beats the random, greedy
baselines and performs decently on other
layouts.

e Monte Carlo Tree Search and CNN can
approximate search space as large as 9 x
16",

e Parallelizing self play, training and pitter
by leveraging cloud services improves the
performance substantially.

7 Future Work

Evaluate against human and minimax base-
lines like stockfish. MCTS was the major bot-
tleneck during training, leverage asynchronous
CUDA version of MCTS to accelerate the
training further. Evaluate on larger games
like chess or go with a significantly bigger dis-
tributed setup. Analyze the transferablity of
the model from one game to another like:

e Extend 5X5 chess model to work on 8X8
board

e Extend 8x8 chess model games with sim-
ilar rules and strategies like chess

e Analyze the model to games with entirely
different rules like Othello.

8 Code

e Github repository can be found at
https://github.com/karthikselva/alpha-
zero-general.

e Short walk through video can be found at
https://youtu.be/NxzABCCzYCE.

Acknowledgment Thanks to Patrick Cho
for his direction and excellent mentorship and
rest of the staff for helping us understand the
architecture behind the beautiful AlphaZero.

References

[Mehdi Mhalla, Frederic Prost 2013] Gard-
ner’s Minichess Variant is solved. arXiv e-print
(arXiv:1307.7118)

[Surag Nair, Shantanu Thakoor, Megha Jhujhun-
wala 2016] Learning to Play Othello Without
Human Knowledge github.com/suragnair/alpha-
zero-general

[Silver et al. 2017a] Silver, D.; Hubert, T.; Schrit-
twieser, J.; Antonoglou, I.; Lai, M.; Guez, A.;
Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; Lillicrap, T.; Simonyan, K.; and Hassabis,
D. Mastering Chess and Shogi by Self-Play with
a General Reinforcement Learning Algorithm.
ArXiv e-prints.

[Browne et al. 2012] Browne, C. B.; Powley, E.;

Whitehouse, D.; Lucas, S. M.; Cowling, P. L;

Rohlfshagen, P.; Tavener, S.; Perez, D.; Samoth-

rakis, S.; and Colton, S. 2012. A survey of monte

carlo tree search methods. IEEFE Transactions
on Computational Intelligence and Al in games

4(1):143.

[Heinz 2001] Heinz, E. A. 2001. New Self-Play
Results in Computer Chess. Berlin, Heidelberg:
Springer Berlin Heidelberg. 262276.

[Ioe and Szegedy 2015] Ioe, S., and Szegedy, C.
2015. Batch normalization: Accelerating deep
network training by reducing internal covariate
shift. In International Conference on Machine
Learning, 448456.

[Kingma and Ba 2014] Kingma, D., and Ba, J.
2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiw:1412.6980.

[Srivastava et al. 2014] Srivastava, N.; Hinton, G.
E.; Krizhevsky, A.; Sutskever, I.; and Salakhut-
dinov, R. 2014. Dropout: a simple way to pre-
vent neural networks from overtting. Journal of
machine learning research 15(1):1929 1958.

(CS230 Stanford University Final Report 5

