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Abstract

Damage of building is an essential indicator of economic losses after earthquakes.
Efficient building damage estimation improves both government’s resource alloca-
tion and future policies of insurance company. Traditional damage estimation uses
statistical learning techniques to predict the damage ratio according to previous
information. In this work, we apply both neural network (NN) and convolutional
neural network(CNN) in this area. We construct a mixture feature that combines
building information and features extracted by CNN. Then the categorical dam-
age ratio is predicted from mixture feature via a artificial neural network(ANN).
Our model achieve 86.5% accuracy in four class damage ratio estimation, which
outperforms traditional models quantitatively.

1 Introduction

Earthquake is an unpredictable and devastating natural disaster in nature. Earthquake losses are
estimated to be $4.4 billion annually in the US [1]. Massive efforts have been paid on mechanism,
structural performance and ground motion analysis of earthquakes [2] [3]. Meanwhile, it is also
essential to assess building economic losses afterwards for it provide necessary information for policy
makers in both government and insurance companies[4][5]. Statistical learning approaches such as
tree method[8] or logistic regression have been used to estimate building damage ratio given building
information like floor area and material[7]. However, due to the complexity of earthquake damage
mechanism, sometimes these methods don’t work well in damage prediction.

Using both artifitial neural networks (ANN) and convolutional neural networks (CNN), this project
aims to build a building damage ratio estimation model based on 2011 New Zealand Christchurch
Earthquake (magnitude 6.3). We first train a CNN model using spatially distributed information, peak
ground velocity (pgv), soil liquefaction, and neighboring house distribution as input. The output of
CNN model are used as extracted features are combined with other building information to form
a vector input which is used in ANN to predict four class damage ratio. The damage ratio is the
percentage of economic loss in the whole value of the house. We compare our model with traditional
statistical learning methodologies such as LDA, QDA and KNN. As deep learning approaches have
not been seen in building damage ratio prediction, our model may be a precedent in this area.
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2 Related work

With the development of statistical tools and machine learning methods, more novel methodologies
were applied. In 2009, Oliver [8] applied a three-layer neural network using intermediate features
in finite element (FEM) building damage ratio analysis, and achieved 88.5% classification accuracy.
Then in 2010, Molina et al. [9] tried logic tree approach in seismic damage estimation. Next in 2011,
Pradhan and Lee used logistic regression and Neural Network in landslide analysis, and Marijana
et al. [10] compared FEM analysis with NN model using same FEM inputs. In 2014, Riedel et al.
[11] used Associate Learning Rule (ALR) in seismic damage prediction and reached around 65%
accuracy merely according to building information. In 2016, Cao et al. used convolutional neural
network to detect damaged buildings during earthquake.

The above mentioned model require abstract features from FEM analysis, and those estimated
variables lack accuracy or are hard to access by non-technical officers. Moreover, CNN merely is
applied in building damage detection rather than damage ratio prediction. This study aims to directly
utilize observed ground motion information in 2011 Christchurch earthquake, and combine it with
building properties to predict building damage ratio based on CNN and ANN.

3 Dataset and Features

3.1 Data collection through various resources

The data [15-16] we have for the 2011 Christchurch earthquake falls into two types. The first type is
building specific information [15]. These data are shown from row 1 to 10 in Table 1.The second
part, earthquake information [16], consists of peak ground velocity, soil liquefaction and building
positions, which are shown in Table 1from row 11 to 14.

Label Data Type Definition Data Source
replace numeric Dwelling value (NZ $) (modelled) NZ Portfolio
incurred numeric Area of building damage Insurance Claim data
floor numeric Building floor area (m?) QVNZ
site numeric Building site area (m?) QVNZ
type categorical ~ Wood, concrete, steel or other wall and Insurance Claim data
roof material
storey integer Number of stories for a building Insurance Claim data
pga numeric Peak ground acceleration University of Canterbury
occu text Occupancy type (commercial, industrial, NZ Portfolio
residential)
year integer Year of building construction NZ Portfolio
soil categorical ~ Soil type (firm,normal,loose) New Zealand GNS
liqg categorical ~ Liquefaction observed (February 2011) Land Damage Assessments
pgv numeric Peak ground velocity University of Canterbury
lat numeric Latitude of the building assessed Land Damage Assessments
lon numeric Longitude of the building assessed Land Damage Assessments
Label data
repair numeric Repair cost (NZ $) (modelled) Insurance Claim data
Dr numeric Ratio of repair to replace = repair / replace

Table 1: Explanation of the data used in our prediction model.

Damage ratio (Dr) refers to percentage of economic loss in respect to one building, it is defined as:

replace

Dr = -
repair

ey

where ’repair’ refers to how much an insurance company should pay for one building, and "replace’
means how much the value of one dwelling should be.



3.2 Data preparation for CNN

There are three channels for CNN, namely pgv’, ’liq’ and *bldg location’. There are discrete observed
datasets shown in Figure 1a. By K-Nearest-Neighbors, the original data for each kind of variable
is interpolated to be a matrix of 5000*5000 in size according to weighted three nearest known data
points in Euclidean distance. The interpolated result is illustrated in Figure 1b. For a single datapoint
we crop 32*32 pixels around the location of the building whose damage ratio we want to predict, and
the 3 channel 32*32 image is used for the input of CNN.

Finally, our dataset contains datapoints for 6788 buildings and they are split into training/test set of
6000/788 in size.
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Figure 1: Input of earthquake information

4 Methods

4.1 Earthquake feature extraction from CNN

We propose a combined networks of VGG and ANN, the architecture is shown in Figure 2 and the
hyperparameters are summarized in Table 2. CNN is used as feature extractor because it can extract
spatial structure of input channels (lig, pgv, bldg location) through convolution operation. We modify
the output layer of VGG CIFAR-10 network [17] to be a softmax layer with 2 categories: damage or
not damage. The network is trained to minimize the softmax cross entropy loss £ as Equation (2),
where y; is the label for large (Dr > 0.1) or small (Dr < 0.1) damage ratio, and y; is the output
from the VGG networks. The network is implemented in Keras [18].
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4.2 Damage ratio prediction by NN

The second network is ANN. The inputs are the building specific information with 10 variables
concatenated with the feature vector (2 categories) extracted from our trained VGG networks. That
gives a total input layer size of 12. ANN have a softmax output layer with number of classes = 4.
Although the damage ratio is a continuous number, we divided it into 4 categories, small: Dr < 0.03,
medium: 0.03 < Dr < 0.1, large: 0.1 < Dr < 0.5, and extra large: Dr > 0.5 . We formulate the
problem as a classification problem where softmax cross-entropy loss is applied. This gives us a
better loss function with larger gradients (compared to the R? loss we used before, which is (y — §)2,
y (hat) stands for (predicted) damage ratio). Softmax loss function is found to be better in our training.
The hyperparameter of ANN is stated in Table2. The ANN is implemented in Tensorflow[19].
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Figure 2: The architecture of our combined networks. VGG is used to extract feature from 3 spatially
distributed information, pgv, lig, and bldg location. The extracted feature (size = 2) is concatenated
with other 10 building specific information to be the input of ANN.

CNN
Architecture VGG Output 2 category softmax
Optimizer SGD Learning rate 0.02
Epoches 100 Batchsize 128
ANN
Input layer 10+2 Hidden layer 1 10
Hidden layer 2 5 Output layer 4
Optimizer Adam Learning rate 0.01
Batchsize 64 Epoch 1000
Activation sigmoid | Loss function | softmax cross-entropy

Table 2: Summary of hyperparameters in our model.

5 Experiments/Results/Discussion

The main evaluation metric we would like to optimize is the prediction accuracy. We trained our
networks to predict the category (small, medium, large, extra large) of damage ratio and compare it
with the ground truth category of damage ratio. The accuracy is defined as

# correct predictions

— 3
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We first trained a pure analytical neural networks. It only reaches 65.2% testing accuracy after tuning.
We thought CNN might be able to extract useful information from spatially distributed information.

During our training of VGG as a feature extractor, we used stochastic gradient descent with a batch
size of 128. We chose the learning rate to be 0.02 since this value in our experiment give us a
steady increase in accuracy and a steady decrease in loss. The model is trained for 100 epoches on a
6000/788 training/test dataset splitting. The VGG networks finally reaches a 66.7% accuracy and
66.2% accuracy on training and test dataset respectively. After the training, the VGG networks is
used as a feature extractor when its weights are not being trained anymore.

Combined model used a two hidden-layer neural network with softmax activation function for output.
The hyperparameters are shown in Table 2. After 1000 epochs training, the mean accuracy could



achieve 86.5% , as depicted in Figure 3b. More importantly, as shown in Figure 3a, the model
achieves good estimations for all subgroups. Even the worst subgroup, 0.1 < Dr < 0.5, could
reach estimation accuracy of 78.9%. We further investigated the influence of each input variables.
This is done by eliminating this specific variable during both training and testing, and look at how
the estimation accuracy drops. We found that ’replace’ (dwelling value), *floor’ (floor area), *occu’
(occupancy type) are the three most important variables for an accurate estimation.

We compare our method with other statistical methods, including: Generalized Additive Model
(GAM).!, Logistic Regression (LR), Quadratic Discriminant Analysis (QDA)?, K-Nearest-Neighbors
(KNN)?, Logical tree (Tree)*, National Engineering Specification. > We see that our method
outperform other statistical methods.
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Figure 3: Analyze the effectiveness of our model

6 Conclusion/Future Work

By combining the training of CNN and ANN models, we manage to find sets of DL features that
are able to yield an excellent damage ratio estimation after earthquake. We develop a ANN that
outperform other state-of-art statistical methods, and ’replace’, floor’, and "occu’ are three most
influential variables in building damage ratio estimation. This is also the first CNN model applied
to the specific area. Features extracted by CNN can help improve the performance of ANN when
combining building information. Future works lie on tuning and visualizing better CNN models.

7 Contributions

Zhaozhuo Xu: Model formulation, CNN and ANN training and tuning. Poster and report writing.
Zhiyuan Li: Data obtaining and dataset construction, NN code writing, poster making, report writing
Haiwen Wang: Coding and debugging NN and CNN model, help process data, poster making, report
writing
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