Investing in SPY ETF: Using ML on SPY
Constituents’ Momentum Data

Project Member — Dale Angus
Project Category — Stock Market Investing

Proposal

In this project, | would like to determine if price and price momentum and other pieces of related data
could be a reliable input for a machine learning model that would predict, in the short-term, the price
direction of the SPY ETF.

Models

Model A

| used an L-layer Classifier model based on the “Deep Neural Network Application Image Classification”
taught in class (week4). | used most of the code provided and | changed a few items such as the
loaddata() function, layer_dims and learning_rate variables. | also removed some code that is specific to
the image classification application.

Model B
| used an 8-class Softmax Classifier model based on the “Tensorflow Tutorial”. Like Model A, | changed
the loaddata() function and changed some parameters to fit my application.

Dataset and Features

The dataset is composed of two years of daily prices and related information of the 499 constituents of
the SPY ETF. Two years of historical price data per constituent would have 470 rows; multiplied by 499
should be around 234000 rows. Below are the features (columns) of the constituents’ data that were
used.

smalO, sma2l, slopelO, slope2l, awesomeoscillator, momentum34, tangentslope,
calcdate, ticker, open, high, low, pctchange, weighting, sector

In addition, information of the related ETFs, i.e. VIX, DIA, IWM and ONEQ, are included and linked (or
joined) to the above data using the closing date. The columns are,

vixclose, vixdataid, vixticker, vixpctchange, diaclose, diadataid, diaticker,
diapctchange, iwmclose, iwmdataid, iwmticker, iwmpctchange, oneqclose,
oneqgdataid, onegticker, onegpctchange

For Model A, the classification label is the sign of the percentage change value of the SPY ETF. It is
represented as 0 for negative and 1 for positive. The column is spyupdown.

For Model B, the eight classes are the SPY ETF end-of-day percentage change in 1% buckets as follows:

A <-3%
3% <A <-2%
2% <A <-1%
1% <A < 0%
0% <A <1%
1% < A <2%
200 <A <3%

3% <A

The columns are dn3, dn2, dnl, dnO, up0O, upl, up2, up3.

Features and Labels

1.

8.
9.

Weighting, Sector — The weights used for each constituent are not the true historical weights
but the respective current weights on the day the dataset was collected*. The sector to which
the constituent belong.

Calcdate (or Close date), Open*, High*, Low*, Close, Volume, Percent Change — Daily closing
information

SMA10* and SMA20* — Simple 10-day and 20-day moving averages

Slopel0* and Slope20* — Slope of the linear regression line of the 10 and 20-day prices
Awesome Oscillator* and 34-day Momentum* — Momentum indicator calculated using their
respective formulas

Tangent Slope* — Calculated by getting the slope of the tangent line at the last data point of the
the 2"-power polynomial (Least Squares Method) equation using 21 data points*
[ETF]pctchange — This is the ratio between the constituent’s percent change and the other
related ETF’s percent change. The other related ETFs are DIA, QQQ, IWM, the index VIX. DIA,
QQQ, IWM were chosen because they represent the most-followed market benchmarks. VIX
was chosen because it is the benchmark measure of the volatility of the SPY.

Spyupdown — the label that represents whether the price of the SPY ETF went up (1) or down (0)
DNx and UPx — these labels represent the 8 softmax classifications.

The columns with asterisks were divided by the constituent’s price. The idea is to eliminate the big

difference between the constituents’ prices, for example, Amazon.com (AMZN) has a price of $1581.76
and Ford Motor Co. has a price of $11.46.

*A special note about weighting: In the absence of the historical data of weightings of each constituent,
| used the most current weighting at the time the data was gathered (2018-05-18). The idea is that, the
actual weight of each constituent could not have changed that much within the two year period. For

example, Apple would have maintained its highest weighting in the ETF within the two year period.

Source Code
A copy of the source code is in GitHub.

Model A

https://github.com/daleangus/proof_im_a_developer/blob/master/finance.py

Model B
https://github.com/daleangus/proof_im_a_developer/blob/master/finance_softmax.py

Java program that shows the calculations of the momentum-related values
https://github.com/daleangus/proof_im_a_developer/blob/master/CalculatedPricingData.java

The rest of the code used by my model that is not posted in GitHub is from the same image classification
application stated above. It is in the dnn_app_utils_v3.py file for Model A and tf_utils.py for Model B.

Two things that | want to point out,

1. The NULLs in the raw dataset is replaced by the column’s mean.

fill value = pd.DataFrame ({col: traindata.mean(axis=1) for col in
traindata.columns})
traindata.fillna (fill value, inplace=True)

2. The sector dictionary is used to represent the sector names as numbers.

sector dictionary = {'Basic Materials':1l, 'Capital Goods':2,
"Conglomerates':3, 'Consumer Cyclical':4, 'Consumer/Non-Cyclical':5,
'Energy':6, 'Financial':7, 'Healthcare':8, 'Services':9, 'Technology':10,
'Transportation':11, 'Utilities’:12}

traindatal 'sector’] = traindatal 'sector'].apply(lambda x:
sector dictionary([x])

Saved Parameters

The trained parameters are saved to disk using the Pickle Python package. Being able to save the
parameters allowed me to use the trained parameters in production. The code snippet below shows
how to save and restore the trained parameters.

import pickle

#save

timestr = time.strftime ("$YSméd-$HSMSES")

print("Saved ag " + "iLf softmax an=" + timestr + " ipickle")
pickle out = open("tf softmax nn-" + timestr + ".pickle”, "wb")

pickle.dump (parameters, pickle out)

#restore
pickle name = 'tf softmax nn-20180530-194327.pickle’
with open(pickle name, 'rb') as handle:

parameters = pickle.load (handle)

Training and Test

Hyperparameter Search

With Model A, | initially limited the number of iterations to 5000 because | was too eager to see the
results. Later | realized that | had to run the training for bit longer. Since | don’t want to waste time
waiting for one result to finish, | configured 5 other computers to train simultaneously. First, using the
same neural network layers, | studied the effect of the learning rates on the accuracy. Once satisfied
with the learning rate value, | went ahead to test different neural network configurations. | ran the
model up to 100,000 iterations or until the absolute difference between the consecutive costs is less
than 7 x 10°°. With Model A, many times, the backward propagation step results in NaN error especially
when running longer iterations. | also noticed that adding more layers doesn’t necessarily generate
better accuracy. With Model B, | tried to see if | can improve the softmax prediction by testing different
learning rates, epochs and mini-batch sizes. | used the Adam Optimizer for Model B.

Both models use Xavier initialization and the cost function,

1 . . .
- (y(l) log o'(zlLl(l)) + (1 - y(l))log(l - o'(zlLl(L)))
ns,
Features Selection
For both models, | focused on studying the effects of including or excluding the weightings and the data
related to other ETFs.

Results
The table shows the stages of the development of the models and production prediction accuracy.
Below are the different test results.

Accuracy Accuracy Accuracy Accuracy

Features Train 56.42% | Test 56.41% Train 56.47% | Test 55.97% Train 57.2% | Test 57% Train 59.67% | Test 59.78%

Percent Change v v v v

Slope10 v v v v

Slope20 v v v v

Awesome Oscillator | v v v v

Momentum v v v v

Tangent Slope v v v v

Open v v v v

High v v v v

Low v v v v

Weighting v v

VIX Close v v v v

VIX Pct Change v v v v

Sector v v v v

DIA % Change ratio v v

IWM % Change ratio v v

ONEQ % Change ratio v v
layer_dims: [12, 10, 9, 5, 4, 1] layer_dims: [12, 10, 9, 5, 4, 1] layer_dims: [12, 10,9, 5, 4, 1] layer_dims: [12, 10, 9, 5, 4, 1]
learning rate: 0.0075 learning rate: 0.0075 learning rate: 0.0075 learning rate: 0.0075
iterations: 2000 iterations: 2000 iterations: 2000 iterations: 2000

Comment BASE LITTLE IMPROVEMENT BETTER BEST

Table 1a: Model A Study the effects of weighting and the related ETF data. Getting a very high accuracy is not the

goal in these tests. The goal is to inspect the effects of including or not the said features.

Accuracy Accuracy Accuracy Accuracy

Features Train 78.5% | Test 73.32% Train 79.59% | Test 79.14% Train 97.74.2% | Test 97.74% Train 98.3% | Test 98.1%

Percent Change v v v v

Slope10 v v v v

Slope20 v v v v

Awesome Oscillator | v/ v v v

Momentum v v v v

Tangent Slope v v v v

Open v v v v

High v v v v

Low v v v v

Weighting v v

VIX Close v v v v

VIX Pct Change v v v v

Sector v v v v

DIA % Change ratio v v

IWM % Change ratio v v

ONEQ % Change ratio 4 v
layer_dims: [12, 25, 12, 8] layer_dims: [13, 25, 12, 8] layer_dims: [15, 25, 12, 8] layer_dims: [16, 25, 12, 8]
learning rate: 0.0001 learning rate: 0.0001 learning rate: 0.0001 learning rate: 0.0001
epoch: 3000 epoch: 3000 epoch: 3000 epoch: 3000
minibatch: 32 minibatch: 32 minibatch: 32 minibatch: 32

Comment BASE LITTLE IMPROVEMENT BETTER BEST

Table 1b: Model B Study the effects of weighting and the related ETF data. Getting a very high accuracy is not the
goal in these tests. The goal is to inspect the effects of including or not the said features.

Production Results

One row (sample) represents the day’s data of one constituent. The significance of this is that even one
sample, and not the 499 constituent data altogether, can be used to predict. But why use one sample
when there are up to 499 available samples to test in production. The training/test data is from 2016-
07-07 to 2016-05-18.

21-May 0.75% 1 100.00%
22-May -0.28% 0 88.18%
23-May 0.28% 1 100.00%
24-May -0.20% 0 100.00%
25-May -0.24% 0 99.79%
29-May -1.15% 0 100.00%
30-May 1.33% 1 100.00%
31-May -0.61% 0 96.79%

Table 2a: Model A Production Predictions. Saved parameters file, dnn-20180527-220443.pickle

21-May 0.75% 4(0% <A<1%) 100.00%
22-May -0.28% 3(-1% <A< 0%) 100.00%
23-May 0.28% 4 100.00%
24-May -0.20% 3 0.00%
25-May -0.24% 3 95.59%
29-May -1.15% 2(-2% <A<-1%) 3.41%
30-May 1.33% 5(1% <A<2%) 98.60%
31-May -0.61% 3 100.00%

Table 2b: Model B Production Predictions. See Model B Softmax classes under Dataset and Features. Saved
parameters file, tf_softmax_nn-20180610-134612.pickle

Possible Application

The model predicts the end-of-day SPY ETF price direction using data for that same day. Obviously, if
one would like to use the prediction of this model to trade in the stock market, he/she cannot wait for
the end-of-day data (market is already close!).

So, in the both model’s current form, the best way to use it is by using real-time data. At a certain point
in time during market hours, e.g. 8:30 am PT when the European Market closes or 5 minutes before the
close of market, a snap shot of that time’s prices and other calculations could be used as estimated
substitute for what could be the end-of-day values. All the input data from items 1 to 7 from the
features listing above can be gathered.

Future improvements of the model would include predicting SPY ETF direction for next day, 3" day, 4™
day and so on. In addition, predictions of other ETFs could be made.

References
Historical Data, Yahoo Finance. https://finance.yahoo.com/

SPY ETF and Constituents, https://us.spdrs.com/en/etf/spdr-sp-500-etf-SPY?fundSeoName=spdr-sp-500-
etf-SPY

Awesome Oscillator,
https://www.metatrader5.com/en/terminal/help/indicators/bw indicators/awesome

Momentum Oscillator,
https://www.metatrader5.com/en/terminal/help/indicators/oscillators/momentum

ETF Correlation, http://www.quantf.com/ETF-correlations.php

